
Towards numerical modelling of natural
subduction systems with an application to

Eastern Caribbean subduction

Menno R. T. Fraters

UTRECHT STUDIES IN EARTH SCIENCES

No. 185



Members of the dissertation committee:

Prof. Dr. Magali Billen
Dept of Earth & Planetary Sciences
UC Davis, USA

Prof. Dr. Nicolas Coltice
Département de Géosciences
Ecole Normale Supérieure de Paris, France

Prof. Dr. Clint Conrad
Centre for Earth Evolution and Dynamics (CEED)
Department of Geosciences
University of Oslo, Norway

Prof. Dr. Boris Kaus
Institute of Geosciences
Johannes Gutenberg University Mainz, Germany

Prof. Dr. Wouter Schellart
Faculty of Science, Geology and Geochemistry
Vrije Universiteit Amsterdam, Netherlands

Copyright © 2019 Menno Fraters, Utrecht University
All rights reserved. No part of this publication may be reproduced in any form,
by print or photographic print, microfilm or any other means, without written
permission by the author.
Printed in the Netherlands by Ipskamp Printing, Enschede

ISBN: 978-90-6266-540-2



Towards numerical modelling of
natural subduction systems with an

application to Eastern Caribbean
subduction

Een opstap naar numerieke modellering van natuurlijke subductie
systemen met een toepassing op het oostlijke Caribisch gebied

(met een samenvatting in het Nederlands)

Proefschrift
ter verkrijging van de graad van doctor

aan de Universiteit Utrecht
op gezag van de rector magnificus, prof.dr. H. R. B. M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

woensdag 15 mei 2019 des ochtends te 10.30 uur

door

Menno Roeland Theodorus Fraters
geboren op 3 oktober 1989 te Wageningen



Promotoren:
Prof. dr. W. Spakman
Prof. dr. D.J.J van Hinsbergen
Prof. dr. W. Bangerth

Copromotor:
Dr. C.A.P. Thieulot

This work is funded by the Netherlands Organization for Scientific Research (NWO),

as part of the Caribbean Research program, grant 858.14.070. This work was partly

supported by the Research Council of Norway through its Centres of Excellence funding

scheme, project number 223272., the Netherlands Research Centre for Integrated Solid

Earth Science (ISES), the Computational Infrastructure in Geodynamics initiative (CIG),

through the National Science Foundation under Award No. EAR-0949446 and The

University of California - Davis, and by the National Science Foundation under awards

OCI-1148116 and OAC-1835673 as part of the Software Infrastructure for Sustained

Innovation (SI2) program (now the Cyberinfrastructure for Sustained Scientific

Innovation, CSSI).



Il est encore plus facile de juger de l’esprit d’un homme
par ses questions que par ses réponses.

It is easier to judge the mind of a man by his questions
than his answers.

Pierre-Marc-Gaston de Lévis

Maximes, préceptes et réflexions sur différens sujets
de morale et de politique. Paris (1808), Maxim xviii
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Chapter 1. Introduction

It has long been understood that there is a strong coupling between pro-
cesses of Earth’s mantle and the tectonic evolution but the nature of the dy-
namic processes involved and their interaction continues to be a main topic
in geodynamic research. Sub-disciplines of Solid Earth Science, like geology or
seismology, provide various valuable observations of the internal workings of
our planet but usually provide only indirect information on acting processes.
Direct access to the operation of deep processes is provided by forward numer-
ical modelling, solving the pertinent conservation laws of continuum mechan-
ics, which ultimately may provide useful predictions of geological, seismolog-
ical, or geodetic observations such that these are better understood and that
hypotheses of acting mantle processes can be tested against observations.

My goal in this thesis is to make new steps toward assessing how man-
tle processes operate and affect tectonic evolution, particularly, by creating
steps toward numerically simulating natural plate boundary regions involv-
ing lithosphere subduction. By far most of current 3D subduction modelling
is of a strongly generic nature aimed at understanding the process and its
interaction with the mantle but not so much on simulating natural subduc-
tion in past or present. Subduction plate boundaries are simplified in initial
models to straight subduction trenches and pure trench-perpendicular con-
vergence instead of implementing the natural geometry of subduction zones
that comprises highly variable trench geometry and the generally oblique con-
vergence of the subducting plate towards the trench. Also, often simplified lin-
ear material-rheology is used. Of course, there are several reasons why this
characterizes the current stage of 3D subduction modelling. Some of these
are: subduction in 3D space is a complex process that requires step-by-step
investigation; obtaining a feasible computation time; exploiting the possibil-
ity to use simple free-slip and no-slip boundaries along the side-walls of the
model domain; or the practical difficulty of constructing 3-D initial models that
mimic the geometrical complexity of natural subduction in an embryonic, or
advanced stage of evolution.

In this thesis, I aim to address the research problems of 1) decreasing the
computation time, while improving the accuracy, of subduction modelling in-
volving realistic non-linear material models, here visco-plasticity, and more ad-
vanced boundary conditions, of 2) establishing a versatile method for build-
ing complex 3D geodynamic models of subduction for use as initial condition
of subduction modelling, and 3) the research problem of the geodynamics of
strongly arcuate subduction. Addressing the latter research problem builds on
providing solutions to the first problems and is intended as a showcase of the
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practical feasibility of coming much closer to simulating natural evolution in
all its geometrical complexity.

Chapter 2 is devoted to providing a solution to the first research problem.
Depending on ambient temperature and pressure, mantle materials exhibit of-
ten a nonlinear response of strain-rate to deforming stress. Using nonlinear
rheology causes the Stokes equation, describing the force balance, to become
nonlinear which consequently leads in Finite Element as well as Finite Differ-
ence applications to a system of nonlinear equations to be resolved. The stan-
dard and stable way to tackle the nonlinearity is by setting up, for each time
step, an iteration scheme by the Picard method which is robust and numer-
ically the easiest way to solve the nonlinear system of equations. However,
complex geodynamic problems, e.g., simulating natural mantle processes, are
characterized by strong nonlinear viscosity and strain-rate variation of several
orders of magnitudes occurring over short distances, often causing the Picard
iteration to slowly converge in each time step, i.e. considerably increasing the
overall computation time.

A more advanced method is the Newton method that uses information
about the derivatives of the nonlinear equations. Under several conditions, this
method can converge much faster to the correct solution of the nonlinear sys-
tem of equations. However, the Newton method for the Stokes equations is not
always stable and may lead to systems of equations for which the linear solver
can not converge, because the involved matrix is singular. To develop a stable
and (almost always) converging Newton method that also leads to a consider-
able decrease in computation time, is the main goal of Chapter 2.

Chapter 3 tackles the second research problem of finding an effective and
versatile method for constructing 3D geodynamic initial models that allow to
approximate the geometrical complexity of natural plate boundaries and 3D
subduction. Setting up initial conditions for geodynamic models, especially in
3D, is so far done by personally developed methods and code, which can be
a very time-consuming process and so far has not led to a more general, easy
to use, open-source solution accessible to the modelling community. Chap-
ter 3 aims to offer exactly that versatile solution, called the Geodynamic World
Builder, such that it is not only relatively easy to use but also provides a simple
interface for use with the various community, or personal, numerical modelling
codes.

Chapter 4 concerns the problem of the geodynamics involved in arcuate
subduction along strongly curved trenches. Trench curvature is still not well
understood but is a common characteristic of natural subduction zones across
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the globe. The negative buoyancy of the subducting slab exerts a vertical force
on the lithosphere entering the trench, slab pull, that basically acts trench-
perpendicular but still has an arc-forming potential by its interaction with lat-
eral lithosphere heterogeneity and with slab-induced mantle flow. Slab pull,
however, cannot easily explain the generally observed trench-oblique conver-
gence of tectonic plates along strongly arcuate trenches. Particularly, arcuate
subduction systems, such as the Marianas-Izu-Bonin, or Aleutians-Alaska sys-
tems, are characterized by trench-perpendicular convergence at one trench
segment (Marianas, Alaska) while a strong trench-parallel component of sub-
ducting plate motion occurs elsewhere along the trench. This suggest that
the slab subducting at the latter trench segment may be involved in lateral
transport through the mantle. In Chapter 4, I investigate this possible geody-
namic aspect of arcuate subduction for the Lesser Antilles system of the eastern
Caribbean where near trench-parallel westward subducting plate motion oc-
curs along the northern trench below which a south-dipping slab is observed
by seismic tomography. This application to a geometrically complex natural
subduction system showcases the benefits of the Newton method developed in
Chapter 2, i.e. stable and fast convergence, and the benefits of the Geodynamic
World Builder for setting up an application to natural subduction. It also in-
tends to demonstrate that more detailed and elaborate applications to natural
subduction systems are now within reach.

A common thread across all chapters is the use and development of the
ASPECT code, which I would like to introduce here. ASPECT (short for Ad-
vanced Solver for Problems in Earth’s ConvecTion) is a modern C++ code de-
signed to solve the equations underpinning the geodynamic processes of the
crust-mantle system (Kronbichler et al., 2012; Heister et al., 2017). Although
originally designed to model convection related problems, its modular design
has allowed a growing core of developers and users that have quickly expanded
ASPECT’s range of applications to thermo-mechanical modelling of the crust-
mantle system using visco-plastic rheology (Glerum et al., 2018), free surface
(Rose et al., 2017), melt transport (Dannberg and Heister, 2016; Dannberg and
Gassmöller, 2018), or even grain size evolution (Dannberg et al., 2017). AS-
PECT is hosted by the Computational Infrastructure for Geodynamics1 (CIG).
The code is based on the deal.II Finite Element library2 (Bangerth et al., 2007;

1www.geodynamics.org
2https://www.dealii.org/
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Alzetta et al., 2018) and employs numerical methods which are at the fore-
front of research, such as adaptive mesh refinement (AMR) based on the p4est
library3 (Burstedde et al., 2011), linear and nonlinear solvers from Trilinos4

(Heroux and Willenbring, 2012), and stabilization of transport-dominated pro-
cesses (Guermond et al., 2010, 2011). It also allows for various domain geome-
tries, such as 2D and 3D Cartesian, 2D Cylindrical, and 3D Spherical domains
encompassing the entire crust-mantle system or parts of it, (hollow) spheres
and even (parts of) ellipsoidal meshes. From the start, the code has been de-
signed to support high levels of parallelism and has been run and shown to
scale on up to tens of thousands of cores. The current version is hosted on
the github platform5 while stable releases are also available on the CIG web-
site6. The code comes with an embedded and automatically generated manual
which is extensive and up-to-date. Users are encouraged to get involved and to
submit either code or so-called cookbooks (geodynamically relevant example
cases) which are thoroughly reviewed by core developers before being merged
into the main version. Finally, every change to the code is tested before be-
coming part of the main code by more than 600 integration tests (and growing)
and more than 100 unit tests assertions (and growing) on a dedicated server
to ensure that none of the existing features of the code is ever broken, thereby
ensuring backwards compatibility.

My own investments in the development of ASPECT have provided me with
the advanced research modelling tool that constitutes the solid base of the re-
search describe in my thesis.

3http://www.p4est.org/
4http://trilinos.org/
5https://github.com/geodynamics/aspect
6https://aspect.geodynamics.org/
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Chapter 2. Efficient and Practical Newton Solvers for Nonlinear Stokes
Systems in Geodynamic Problems

2.1 Summary
Many problems in geodynamic modeling result in a nonlinear Stokes prob-

lem in which the viscosity depends on the strain rate and pressure (in addition
to other variables). After discretization, the resulting nonlinear system is most
commonly solved using a Picard fixed-point iteration. However, it is well un-
derstood that Newton’s method – when augmented by globalization strategies
to ensure convergence even from points far from the solution – can be substan-
tially more efficient and accurate than a Picard solver.

In this contribution, we evaluate how a straight-forward Newton method
must be modified to allow for the kinds of rheologies common in geodynam-
ics. Specifically, we show that the Newton step is not actually well-posed for
strain rate-weakening models without modifications to the Newton matrix. We
derive modifications that guarantee well-posedness and that also allow for ef-
ficient solution strategies by ensuring that the top-left block of the Newton ma-
trix is symmetric and positive definite. We demonstrate the applicability and
relevance of these modifications with a sequence of benchmarks and a test case
of realistic complexity.

2.2 Introduction
Geodynamics aims to understand the dynamics of processes in and on the

Earth on a wide range of spatial and temporal scales, typically by connecting
physical processes to geological observations through either analogue or nu-
merical modeling. The physical basis of most numerical modeling codes in
the geodynamics community are continuum mechanics conservation laws for
momentum, mass, and energy. A fundamental assumption that underlies most
models is that we can average over the small scales at which natural materials
exhibit heterogeneity, and that we can approximate the macroscopic material
properties to obtain equations that are well understood.

When considering long enough time scales, the dynamics of the mantle –
and, to some degree, the crust – can then be described as a slow-moving fluid
that is governed by the Stokes equations, together with advection-diffusion
equations for the temperature, chemical compositions, and possibly other

This chapter is currently under review at Geophysical Journal International as Efficient and
Practical Newton Solvers for Nonlinear Stokes Systems in Geodynamic Problems, M. Fraters, W.
Bangerth, C. Thieulot and W. Spakman.
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quantities. In the case of the Stokes equations, the fluid’s effective viscosity will
then depend on the material’s temperature, pressure, composition, and possi-
bly other factors such as mechanical stress. Rheology – the science of deter-
mining how a material flows – is therefore of key importance to this approach.
Unfortunately, the rheology of Earth materials over geological timescales is also
one of the least constrained ingredients in modeling the physical processes of
the solid Earth. For both philosophical and computational reasons, many stud-
ies use linear rheologies (e.g. Baumann et al., 2014; Fritzell et al., 2016; Pusok
and Kaus, 2015), i.e., a viscosity that may depend on the external temperature
and chemical composition, but not on the fluid variables velocity (or its deriva-
tives, e.g., the strain rate) and pressure. However, experiments have shown that
the rheology of Earth materials can behave in a very nonlinear way (Karato and
Wu, 1993). Specifically, in deformation regimes, the mechanical stress leads to
material weakening with increasing strain-rate and consequently an effective
viscosity that is a decreasing function of the strain rate. Furthermore, many
widely used rheological models – in particular if they try to incorporate plastic
effects – include a pressure dependence of the viscosity. This nonlinearity of
the rheology results in models best described by a nonlinear variation of the
Stokes equations. An additional source of nonlinearities arises from the fact
that Earth materials are compressible, i.e., that their density depends on the
pressure. Because there is no convenient way of solving this kind of nonlinear
partial differential equation exactly, it is important to develop numerical meth-
ods that can discretize and iteratively resolve the nonlinearity in the equations.

A simple and frequently used way to solve such nonlinear problems is to
use Picard iterations, a particular form of fixed point iterations (Kelly, 1995). In
it, one computes the viscosity and density as a function of the previous itera-
tion’s strain rate and pressure, solves for a new velocity and pressure field, and
then repeats the process. The Picard iteration owes its popularity to the fact
that it is relatively easy to implement in codes that only support linear rheolo-
gies because it only requires the repeated solution of linear problems. It is also
often globally convergent, i.e., with sufficiently many iterations it is possible to
approximate the solution of the nonlinear problem regardless of the choice of
initial guess. Consequently, it is the method that is likely used in the majority
of mantle convection papers that actually iteratively resolve the nonlinearity
in each time step; most papers do not explicitly state so, but van Keken et al.
(2008); Tosi et al. (2015); Buiter et al. (2016); Glerum et al. (2018) are some ex-
amples.

On the other hand, Picard iterations are often slow to converge, requiring

9
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dozens or hundreds of iterations for strongly nonlinear problems – something
we also observe in our results in Section 2.4. This slow convergence may make
the solution of nonlinear problems to high accuracy prohibitively expensive.
Consequently, commonly used approaches to cope with the high computa-
tional cost are, for example, limiting the allowed number of Picard iterations
per timestep (e.g. Lemiale et al., 2008), combining Picard iterations with small
timesteps to ensure good starting guesses (e.g. Ruh et al., 2013), or other mostly
ad hoc approaches. In practice, however, many studies do not adequately doc-
ument the exact algorithm used and how this affects the accuracy of the solu-
tions of the equations considered.

Here, we address the slow convergence of nonlinear solvers by replacing
the Picard solver by a Newton solver (Kelly, 1995). Previous applications of
Newton’s method to geodynamics problems can be found in May et al. (2015);
Rudi et al. (2015); Kaus et al. (2016); Spiegelman et al. (2016). Newton’s method
promises quadratic convergence towards the solution, compared to the linear
convergence of the Picard iteration, when the initial guess is close enough to
the solution of the nonlinear problem and therefore offers the prospect of vastly
faster solution procedures. On the other hand, the implementation of Newton’s
method is substantially more involved than a Picard iteration. Furthermore,
requiring an initial guess that is close enough to the exact solution is often im-
practical, and may require running a number of initial Picard iterations before
starting the Newton iteration.

In this paper we present the details of an improvement on the Newton
method for the nonlinear Stokes problem, and discuss an implementation of
this improved Newton solver along with recommendations on how to use it.
Specifically, and going beyond what is available in the literature, we will show
that a naive application of Newton’s method may break both the symmetry and
the positive definiteness of the elliptic part of the (linearized) Jacobian of the
Stokes operator. While the lack of symmetry is annoying from a practical per-
spective because it makes the solution of the linear system associated with each
Newton step more complicated, a lack of positive definiteness implies that the
Newton step is ill-posed and may not have a solution. We will analyze both of
these issues in detail and propose modifications to the Newton equations that
retain the symmetry and restore the positive definiteness. We will also consider
whether there are special classes of material models where these modifications
are not necessary. Unfortunately, as we will show, many rheologies that have
been used extensively in the literature do not fall into these classes; our meth-
ods are therefore strict improvements over the current state-of-the-art and will

10
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allow solving problems that were not previously solvable with an unmodified
Newton method.

While there are previous reports on using a Newton method for Stokes prob-
lems in geodynamics applications (see, for example, May et al. (2015); Rudi
et al. (2015); Kaus et al. (2016); Spiegelman et al. (2016)), we will provide a more
in-depth discussion of the mathematical properties of the operators and linear
systems associated with each Newton step. We will underpin our claims with
numerical experiments and demonstrate that the approach advocated herein
is, indeed, more efficient and robust than previous approaches. In particular,
we will show that our implementation of the Newton solver significantly de-
creases computational time for realistic problems, with greatly improved ac-
curacy. Our implementation is available as open source as part of the ASPECT
code (Kronbichler et al., 2012; Heister et al., 2017), an open source geodynamics
community code.

The layout of the remainder of this paper is as follows: We will first describe
the mathematical formulation of the nonlinear Stokes problem we consider
here, its discretization, and linearization in Section 2.3. This section also con-
tains our main results on how the Newton method has to be modified (“stabi-
lized”) in order to make it well-posed, as well as a discussion of practical aspects
of how this method can be embedded in efficient nonlinear and linear solvers.
We then show how the above works in practice in Section 2.4, first using three
artificial test cases and then using a realistic application of modeling subduc-
tion. We conclude in Section 2.5.

2.3 Problem statement and numerical methods
2.3.1 The model

Let us begin by concisely stating the equations we want to solve herein. We
are concerned with modeling convection in the Earth mantle, a process that is
typically described by a coupled system of differential equations. Under com-
monly used assumptions – see for example Schubert et al. (2001) – typical mod-
els include a Stokes-like, compressible fluid flow system for the velocity u and
pressure p defined in the volume Ω⊂ Rd (where the space dimension d = 2 or
3) under consideration,

−∇·
[

2η

(
ε(u)− 1

3
(∇·u)I

)]
+∇p = ρg inΩ, (2.1)

−∇· (ρu) = 0 inΩ, (2.2)

11
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where η is the viscosity, ρ the density, g the gravity vector, ε(·) denotes the sym-
metric gradient operator defined by ε(v) = 1

2 (∇v+∇vT), and I is the d×d identity
matrix. (The sign in (2.2) is chosen in this way because −∇· is the adjoint op-
erator to the gradient in the first equation, leading to a symmetric system if the
density is constant, as shown below.)

While these equations describe a compressible model, we will assume for
the purposes of this paper that the fluid is in fact incompressible, i.e., that
∇ · (ρu) = ρ∇ ·u = 0. We do so because we can illustrate all difficulties asso-
ciated with the Newton method using this simplification already, and because
many of the approximations used in geodynamics (for example, the Boussi-
nesq approximation) also assume incompressibility. In addition to this sim-
plification, we have to scale the equations to ensure that we can numerically
compare the residuals of the two equations and consequently have a basis for
numerically stable algorithms. Consequently, we multiply the second equation
by a constant sp = η0

L where η0 is a “reference viscosity” and L a length scale
of the domain we are solving the equations in. (See Kronbichler et al. (2012)
for a more detailed discussion.) In order to retain the symmetry between the
divergence in the second equation and the gradient in the first, we also replace
the pressure by a scaled version, p̄ = 1

sp
p. The properly scaled, incompressible

equations then read as follows:

−∇· [2ηε(u)
]+ sp∇p̄ = ρg, (2.3)

−sp∇·u= 0. (2.4)

It is this form of the equations we will attempt to solve, usingu, p̄ as the primary
variables. Of course, the physical pressure can be recovered as p = sp p̄ after the
system has been solved.

In geodynamic models, the fluid flow model is coupled to an equation for
the temperature T ,

ρCp

(
∂T

∂t
+u ·∇T

)
−∇·k∇T = ρH

+2η

(
ε(u)− 1

3
(∇·u)I

)
:

(
ε(u)− 1

3
(∇·u)I

)
+αT T

(
u ·∇p

)
+ρT∆S

(
∂X

∂t
+u ·∇X

)
inΩ,

(2.5)
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and possibly other equations that describe the transport of chemical composi-
tions. Here, Cp is the specific heat, αT is the thermal expansion coefficient, k
the thermal conductivity, H is the internal heat production, and ∆S and X are
related to the entropic effects of phase changes. All coefficients that appear in
these equations typically depend on the pressure, temperature, chemical com-
position, and – in the case of the viscosity – the strain rate ε(u).

Even though the entire system is coupled in nonlinear ways, in this paper,
we will only concern ourselves with the first set of these equations, (2.3)–(2.4),
and how they can efficiently be solved through a Newton scheme. In principle,
one may want to solve the entire system with a Newton scheme, given that the
velocity appears in (2.5), the temperature in (2.3)–(2.4) via the temperature de-
pendence of the viscosity and density, and more generally all coefficients may
depend on pressure and temperature. While this is beyond the scope of the cur-
rent paper, being able to apply a Newton method to the Stokes sub-system is
clearly a necessary ingredient to the larger goal. Consequently, the efficient so-
lution of nonlinear Stokes problems is of interest in itself. As we will show, this
alone is not trivial, and will therefore serve as a worthwhile target for the inves-
tigations in this paper. In fact, the incompressible formulation already poses all
of the mathematical difficulties we will encounter in deriving well-posed New-
ton schemes. In other words, it serves as a good model problem to illustrate
and understand both difficulties and solutions related to the linearization. The
incorporation of compressible terms (i.e., solving (2.1)–(2.2)) would then only
complicate the exposition of our methods. At the same time, we point out that
our methods immediately carry over to compressible models – albeit with sig-
nificantly more cumbersome formulas; we will investigate this generalization
in future work.

2.3.2 Discretization
We convert equation (2.3)–(2.4) above into a finite-dimensional system by

utilizing the finite element method for discretization. To this end, we seek ap-
proximations

uh(x) =∑
j

U jϕ
u
j (x) (2.6)

p̄h(x) =∑
j

P̄ jϕ
p
j (x) (2.7)

where ϕu
j and ϕ

p
j are the finite element basis functions for the velocity and

pressure, respectively.
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The expansion coefficients U j , P̄ j are found by solving the discrete weak
form of the equations. Discretization of the incompressible system then leads
to a nonlinear system in X = (U ,P̄ ),

Q(X)X = b(X), (2.8)

where the matrix Q and right hand side b have an internal sub-structure. For
our incompressible formulation, this substructure has the form(
A BT

B 0

)(
U
P̄

)
=

(
f
h

)
. (2.9)

Here, the matrix and right hand side blocks are defined as

Ai j = (ε(ϕu
i ),2ηε(ϕu

j )), Bi j =−sp (ϕq
i ,∇·ϕu

j ), (2.10)

fi = (ϕu
i ,ρg), hi = 0, (2.11)

where as usual we denote (α,β) = ∫
Ωα(x)β(x) dx. Because the viscosity η may

depend on the pressure and strain rate, and the density ρ on the pressure, the
system is in general nonlinear in the coefficients U j , P̄ j as both A=A(X) and
f = f (X). (The coefficients η,ρ may of course also depend on the temperature
or other factors, but we consider these fixed for the purposes of the current
paper.)

Much of the content of this paper is concerned with the question of how to
solve the nonlinear system (2.8) in practice, i.e., how a naive application of the
standard Newton iteration solver needs to be adapted to make it practical and
efficient.

2.3.3 Newton linearization
In order to resolve the nonlinearity in equation (2.8), let us introduce the

residual r(X) = Q(X)X −b(X). In Newton iteration k + 1, starting with the
previous guess Xk , we then need to solve

Jk δXk =−rk (2.12)

where rk = r(Xk ) and Jk = ∇Xr(Xk ). This system has the internal sub-
structure(
Juu

k J
up
k

J
pu
k 0

)(
δUk

δP̄k

)
=−

(
ruk
r

p
k

)
. (2.13)
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After solving for δXk , we can compute Xk+1 = Xk +αk δXk where αk is a
step length parameter that can be determined, for example, using a line search
(Kelly, 1995; Nocedal and Wright, 1999).

There are a number of approaches to determining the entries of the matrix
Jk and to solving the resulting linear system. For example, in the geodynam-
ics community alone, May et al. (2015) and Kaus et al. (2016) make use of a
Jacobian-free Newton-Krylov (JFNK) framework (see Knoll and Keyes (2004)),
which essentially computes a finite difference approximation of J by evaluat-
ing r at different values of its argument, and integrates this directly into the
solver so that the full Jacobian matrix is never built. On the other hand, Rudi
et al. (2015) and Spiegelman et al. (2016) use the same approach as we will take
here and compute derivatives analytically or semi-analytically, except that Rudi
et al. (2015) implemented this in a Jacobian-free manner.

Regardless of how exactly these derivatives are computed, the blocks of the
linear system for the Newton updates will have to have the following form
(again omitting dependencies on quantities we consider frozen, such as the
temperature):(
Juu

k

)
i j =

∂

∂U j

(
AkUk +BTP̄k −fk

)
i

= (Ak )i j +
(
ε(ϕu

i ),2
(∂η(ε(uk ), pk )

∂ε
: ε(ϕu

j )
)
ε(uk )

)
, (2.14)

(
J

up
k

)
i j
= ∂

∂P̄ j

(
AkUk +BTP̄k −fk

)
i

= BT
i j +

(
ε(ϕu

i ),2
(∂η(ε(uk ), pk )

∂p̄
ϕ

p
j

)
ε(uk )

)
,

= BT
i j +

(
ε(ϕu

i ),2
(∂η(ε(uk ), pk )

∂p

∂p

∂p̄
ϕ

p
j

)
ε(uk )

)
,

= BT
i j + sp

(
ε(ϕu

i ),2
(∂η(ε(uk ), pk )

∂p
ϕ

p
j

)
ε(uk )

)
, (2.15)

(
J

pu
k

)
i j
= ∂

∂U j
(BUk −hk )i

= Bi j . (2.16)

It is easy to see that – as expected – the Newton system (2.13) reverts to the sim-
ple Stokes problem if the viscosity does not depend on strain rate or pressure,
i.e., if the system is linear.

As we will show below, while equation (2.12) (and its block structure (2.13))
is the correct linearization of the (discretized) original, nonlinear system (2.3)
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and (2.4), it turns out that this does not necessarily lead to a well-posed prob-
lem. This is not uncommon in optimization problems where a function f (x)
may have a well-defined minimizer, but the Hessian matrix Hk = ∇2 f (xk ) at
early iterates may be singular or have negative eigenvalues; consequently the
solution of the linear systemHk δxk =−∇ f (xk ) may not have a solutionδxk or
the solution may not be a direction of descent. There are standard techniques
described in the optimization literature for these cases (see, for example, the
section on “Hessian modification” methods in Nocedal and Wright (1999)) that
we will adapt in the following sections, though we will work at the level of the
partial differential equations that give rise to the Newton matrix, rather than
at the algebraic level of the matrix we wish to modify. Furthermore, the linear
system we obtain in each Newton step may be difficult to solve for practical
reasons if it is not symmetric.

We will therefore discuss the practical implications of Newton linearization
in Sections 2.3.4 and 2.3.5 below, along with remedies to the problems we iden-
tify. It is important to stress that the modifications we propose only change the
matrix Jk in (2.12) but not the right hand side. As a consequence, we can hope
that the iterates Xk still converge to the correct solution X of (2.8), and this
is indeed the case in our numerical experiments as we observe that ‖rk‖ → 0
as the iterations proceed. In other words, we replace an exact (though poten-
tially ill-posed) Newton iteration by an approximate (and well-posed) Newton
iteration, but we continue to solve the original physical problem.

2.3.4 Restoring symmetry of Juu

Even for incompressible models, given the form of the individual blocks in
(2.14)–(2.16), the Newton system (2.13) is in general not symmetric. This is de-
spite the fact that the matrix Q in the nonlinear model (2.8) and in particular
A in (2.9) are of course symmetric, as shown in (2.10).

On the other hand, symmetry of matrices is an important property from a
practical perspective because it allows for the construction of efficient solvers
and preconditioners. As a consequence, we advocate replacing (2.12) by an
approximation. This of course yields a different Newton update δxk and may
destroy the quadratic convergence order of the Newton method. On the other
hand, we retain our ability to construct efficient solvers and preconditioners;
in practice, one does not often run a large number of Newton iterations in each
time step, and consequently a reduction from quadratic to possibly only super-
linear convergence order may be acceptable. As pointed out above, we do not
modify the right hand side of the Newton update equation and consequently
converge to the solution of the original nonlinear problem.
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Specifically, then, we advocate for the following approximation of (2.14):

(
Juu

k

)
i j ≈ (Ak )i j +

(
ε(ϕu

i ),
(∂η(ε(uk ), pk )

∂ε
: ε(ϕu

j )
)
ε(uk )

)
+

(
ε(ϕu

j ),
(∂η(ε(uk ), pk )

∂ε
: ε(ϕu

i )
)
ε(uk )

)
.

This approximation ensures that the top left block in (2.13) is indeed symmet-
ric, and as we will see below, this and the modification discussed in the next
section will then allow for the construction of efficient, multigrid-based pre-
conditioners and the use of the Conjugate Gradient method. Indeed, the mod-
ification simply symmetrizes the second term in (2.14). In order to analyze the
effect of the underlying approximation, it is useful to rewrite the original term
in (2.14) in sum notation:(
ε(ϕu

i ),2
(∂η(ε(uk ), pk )

∂ε
: ε(ϕu

j )
)
ε(uk )

)
=

∫
Ω

∑
mn

ε(ϕu
i )mn

[∑
pq

2
∂η(ε(uk ), pk )

∂εpq
ε(ϕu

j )pq

]
ε(uk )mn

=
∫
Ω

∑
mn,pq

ε(ϕu
i )mnE(ε(uk ))mnpqε(ϕu

j )pq

where the rank-4 tensor E is defined as E(ε(u))mnpq =
[

2ε(u)mn
∂η(ε(u),p)

∂εpq

]
.

Clearly, the matrix Juu
k is symmetric if the tensor E is symmetric, i.e., Emnpq =

Epqmn , but this is not always the case. (By its definition, we already have
Emnpq = Enmpq = Emnqp .) The modification we propose is equivalent to explic-
itly symmetrizing this tensor, i.e., replacing Emnpq by E sym

mnpq = 1
2

(
Emnpq +Epqmn

)
and replacing the matrix in (2.14) by(
Juu

k

)
i j = (Ak )i j +

(
ε(ϕu

i ),E sym(ε(uk )) ε(ϕu
j )

)
. (2.17)

It is instructive to consider whether there are cases in which the tensor E is
already symmetric, and replacing it by its symmetrized version consequently
does not change anything. Specifically, this is the case if the viscosity η(ε(u))
can be written as a scalar function of the square of the strain rate, i.e., η(ε(u)) =
f (‖ε(u)‖2) where ‖ε‖2 =∑

i j ε
2
i j . In this case, the chain rule implies that

∂η(ε(u))

∂εpq
= f ′(‖ε(u)‖2)

∂‖ε(u)‖2

∂εpq
= 2 f ′(‖ε(u)‖2) ε(u)pq .
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We then have that E(ε(u))mnpq = 4 f ′(‖ε(u)‖2)ε(uk )mnε(u)pq , which satisfies
the desired symmetry condition.

Furthermore, for incompressible materials, we have that trace ε(u) = divu=
0, and in that case, the second invariant of the strain rate can be simplified
to I2(ε(u)) = 1

2

[
(trace ε(u))2 − trace (ε(u)2)

] = −1
2 trace (ε(u)2) = −1

2‖ε(u)‖2. In
other words, for incompressible materials, the second invariant is a function of
the square of the norm of the strain rate, and consequently any material model
that only depends on the second invariant then also satisfies the criteria for
cases where the explicit symmetrization does not actually change anything. In-
deed, many incompressible material models define the viscosity only in terms
of the second invariant of the strain rate, see for example Schellart and Moresi
(2013). (We note that the geodynamics literature uses varying definitions for
the second invariant. In contrast to the one used above, some papers use the

definition I2(ε(u)) = (1
2ε(u) : ε(u)

)1/2 = (1
2‖ε(u)‖2

)1/2
– see, for example, Gerya

(2010, p. 56) or May et al. (2015). However, even with this convention the sec-
ond invariant is a function of the square of the norm of the strain rate, and the
conclusion above about material models that are functions of only the second
invariant of the strain rate remains valid.)

We end by pointing out that the entire Jacobian remains non-symmetric
since, in general, Jup 6= (Jpu)T because of the added term due to the deriva-
tive of the viscosity with regard to the pressure (see (2.15) and (2.16)). We will
come back to this in Section 2.3.6.

2.3.5 Restoring well-posedness of the Newton step

The Stokes-like system (2.13) that arises from Newton linearization can only
be well-posed if the top-left block is invertible. However, it turns out that this
is not always the case, as we will see shortly. It is important to realize, how-
ever, that a lack of well-posedness of the Newton step is not equivalent to a
lack of well-posedness of the original, nonlinear problem from which it arises.
Indeed, it is easy to conceive of situations where a Newton method applied to
finding solutions of one-dimensional equations f (x) = 0 fails because one of
the intermediate iterates xk happens to land at a location where f ′(xk ) = 0 and
the next iteration fails because there is no δxk so that f ′(xk )δxk = − f (xk ). In
multiple dimensions, and in particular in the case of the infinite dimensional
operator from which the top-left matrix block Juu is derived, the situation is
clearly more complex, but not much more complicated to understand.
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To this end, recall that after the symmetrization discussed in the previous
section, the matrix Juu has entries

(Juu)i j =
(
ε(ϕu

i ),2η(ε(u))ε(ϕu
j )

)
+

(
ε(ϕu

i ),E sym(ε(u))ε(ϕu
j )

)
= (

ε(ϕu
i ),

[
2η(ε(u))I ⊗I +E sym(ε(u))

]︸ ︷︷ ︸
=:H

ε(ϕu
j )

)
,

where the rank-4 tensor (I ⊗ I)i j kl = δi kδ j l maps a symmetric rank-2 tensor
onto itself. A sufficient (though not necessary) condition for the matrix Juu to
be invertible (i.e., to have no zero eigenvalues) is if the corresponding differen-
tial operator, −∇· [Hε(•)] is elliptic. This is the case if and only if the tensor H
(as a map from rank-2 symmetric tensors to rank-2 symmetric tensors) has only
positive eigenvalues, i.e., if ε : (Hε) > 0 for all symmetric, non-zero rank-2 ten-
sors ε. (We provide a bit more mathematical background for this connection
between the coefficient H and the ellipticity of the corresponding differential
equation in Appendix 2.7.)

Informally, for a strain hardening material model, ∂η(ε(u))
∂ε is positive, and

then so is 2η(ε(u))I⊗I+E sym(ε(u)) because E sym is a positive correction to the
already positive definite tensor 2ηI ⊗I . In other words, H would then be pos-
itive as would the differential operator, and Juu would be an invertible matrix.
The same would be true if the material model is strain weakening and if the
amount of weakening is “small enough” because then the “small correction”
E sym does not offset the positive definiteness of 2ηI⊗I . That said, we will need
to be more formal with arguments as we are dealing with tensors instead of
scalars; the remainder of the section is therefore devoted to formalizing these
arguments and providing a solution to the problem.

Specifically, given the definitions above, the tensor H can be written as

H = 2η(ε(u))I ⊗I +E sym(ε(u))

= 2η(ε(u))I ⊗I +ε(u)⊗ ∂η(ε(u), p)

∂ε
+ ∂η(ε(u), p)

∂ε
⊗ε(u),

i.e., H is a rank-2 update of a multiple of the identity operator. The first of these
three terms has all eigenvalues equal to 2η, and the other two terms then lead
to a perturbation of two of these eigenvalues corresponding to eigendirections

that are spanned by ε(u) and ∂η(ε(u),p)
∂ε . As mentioned above, unless a material’s

strain weakening rate is sufficiently small, these perturbations may be strong
enough to make one or both of the perturbed eigenvalues negative, and in this
case the Newton-step fails to be well-posed.

19



2

Chapter 2. Efficient and Practical Newton Solvers for Nonlinear Stokes
Systems in Geodynamic Problems

To avoid this, we introduce a tensor

H spd = 2η(ε(u))I ⊗I +αE sym(ε(u))

= 2η(ε(u))I ⊗I +α
[
ε(u)⊗ ∂η(ε(u), p)

∂ε
+ ∂η(ε(u), p)

∂ε
⊗ε(u)

]
,

where 0 < α ≤ 1 is chosen in such a way that H spd is positive definite. Using
this modified form of H spd at every quadrature point at which we perform the
integration of the bilinear form for the Newton matrix, we then build the matrix
Juu used in the iteration. As before, since we do not change the right hand
side of the Newton update equation, we converge to the solution of the original
nonlinear problem.

Clearly, ifα= 0, then H sym is the identity operator times 2η and has positive
eigenvalues. Because the eigenvalues depend continuously on α, there must
be an α > 0 so that H spd is indeed positive definite. Ideally, to retain the con-
vergence rate of Newton’s method, we would like to choose α= 1. We therefore
propose the following choice: we want to chooseα so that (i) we haveα= 1 if H
is already positive definite, (ii) α is as large as possible so that H spd is positive
definite. In practice, however, we will also choose α small enough to avoid the
case where one of the eigenvalues of H spd is positive but very small compared
to 2η, to avoid the numerical difficulties resulting from trying to solve a linear
problem with a poorly conditioned matrix Juu .

It turns out that we can use the rank-2 update form of H and H spd to ex-
plicitly compute the value of α. Let us abbreviate E sym = a ⊗b +b ⊗ a where

a = ε(u) and b = ∂η(ε(u),p)
∂ε . Then it is clear that the (non-trivial) eigenvec-

tors of E sym must lie in the plane spanned by a,b, i.e., have the form v =
cos(θ) a

‖a‖ + sin(θ) b
‖b‖ . The two non-trivial eigenvalues of E sym are then the ex-
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tremal values of the Rayleigh quotient

R(α) = v : (E sym : v)

=
[

cos(θ)
a

‖a‖ + sin(θ)
b

‖b‖
]

:

(
[a ⊗b +b ⊗a] :

[
cos(θ)

a

‖a‖ + sin(θ)
b

‖b‖
])

= 2

[
cos(θ)‖a‖+ sin(θ)

b : a

‖b‖
][

cos(θ)
b : a

‖a‖ + sin(θ)‖b‖
]

= 2

[
(b : a)cos(θ)2 +

(
(b : a)2

‖b‖‖a‖ +‖a‖‖b‖
)

sin(θ)cos(θ)+ (b : a)sin(θ)2
]

= 2

[
(b : a)+

(
(b : a)2

‖b‖‖a‖ +‖a‖‖b‖
)

sin(θ)cos(θ)

]
= 2

[
(b : a)+ 1

2

(
(b : a)2

‖b‖‖a‖ +‖a‖‖b‖
)

sin(2θ)

]
= 2

[
b : a

‖a‖‖b‖ + 1

2

(
(b : a)2

‖b‖2‖a‖2 +1

)
sin(2θ)

]
‖a‖‖b‖.

Thus, the eigenvalues of E sym are given by
[

2 b:a
‖a‖‖b‖ ±

(
(b:a)2

‖b‖2‖a‖2 +1
)]
‖a‖‖b‖. In

other words, there is one positive eigenvalue λmax(E sym) =
[

1+ b:a
‖a‖‖b‖

]2 ‖a‖‖b‖
and one negative or zero eigenvalue λmin(E sym) =−

[
1− b:a

‖a‖‖b‖
]2 ‖a‖‖b‖.

The only eigenvalue of H spd we have to worry about becoming negative is
therefore the one associated with the (possibly) negative eigenvalue of E sym,

i.e., 2η(ε(u)) − α
[

1− b:a
‖a‖‖b‖

]2 ‖a‖‖b‖. This implies that we can choose the

damping factor α as follows to ensure positive semi-definiteness:

α=


1 if

[
1− b:a

‖a‖‖b‖
]2 ‖a‖‖b‖ < 2η(ε(u))

2η(ε(u))[
1− b:a

‖a‖‖b‖
]2‖a‖‖b‖

otherwise.

In practice, we would like to stay well away from a zero eigenvalue and in-
stead choose α as follows:

α=


1 if

[
1− b:a

‖a‖‖b‖
]2 ‖a‖‖b‖ < csafety 2η(ε(u))

csafety
2η(ε(u))[

1− b:a
‖a‖‖b‖

]2‖a‖‖b‖
otherwise,

(2.18)

where 0 ≤ csafety < 1 is a safety factor that ensures that the smaller eigenvalue
of H spd is at least (1− csafety)2η and thus bounded away from zero. This com-
putation is easily performed at every quadrature point during the assembly of

21



2

Chapter 2. Efficient and Practical Newton Solvers for Nonlinear Stokes
Systems in Geodynamic Problems

Juu . This procedure then guarantees that the resulting matrix is symmetric
and positive definite, implying that the Newton direction is well defined.

It is again instructive to consider whether there are cases where we can
always choose α = 1, i.e., use the unmodified Newton step (possibly up to
the symmetrization discussed in the previous section). The simplest case is if
a : b = ‖a‖‖b‖ because in that case the definition of α in (2.18) always ends up
in the first branch, regardless of the size of η(ε(u)). Given the definition of a,b,

this is specifically the case if ∂η(ε(u),p)
∂ε is a positive multiple of ε(u). Similarly

to the discussion in the previous section, this is the case if η(ε(u)) = f (‖ε(u)‖2)
and if f ′ ≥ 0, i.e., for a strain-hardening material. It is not difficult to show that
this extends to the case where the viscosity is given by a non-decreasing func-
tion η(ε(u)) = f (‖Pε(u)‖2) where P is an orthogonal projection applied to the
strain rate; an example is the operator that extracts the deviatoric component
of the strain rate.

A more interesting case is where the material exhibits strain weakening. In
that case, intuitively the conditions in (2.18) imply that we can only choose α=
1 if the material “weakens slowly enough”. Let us, for example, consider the
class of materials for which η(ε(u)) = η0 [I2(ε(u))]

1
n −1. Such laws are typically

used to describe either diffusion (n = 1) or dislocation creep (n > 1), see Karato
(2012). Indeed, we show in Appendix 2.8 that in these cases one has to always
choose α< 1 if n exceeds a certain threshold.

2.3.6 Algorithms for the solution of the nonlinear problem
The discussions of the previous sections show that a naive application of

Newton’s method may lead to matrices that are neither symmetric nor positive
definite. Indeed, in some cases the equations for the Newton update may not
be well-posed at all (see, for example, the discussion in Appendix 2.8), even if
the original, nonlinear model has all of these properties.

The remedies outlined above restore symmetry, positive definiteness, and
well-posedness, and consequently lend themselves for a practical implemen-
tation. On the other hand, the resulting equations for the update are differ-
ent from the ones obtained by linearizing the residual, and consequently we
may not be able to expect quadratic convergence of the resulting nonlinear it-
eration. Indeed, this is what we will observe in the experiments we show in
Section 2.4. Regardless, the modifications have to be incorporated into an ac-
tual algorithm to solve the nonlinear problem. The algorithm we propose for
this – which is also the one implemented in the ASPECT code (Kronbichler
et al., 2012; Heister et al., 2017) – is therefore outlined below. As for many other
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nonlinear problems, it is not easy to universally achieve convergence, and the
resulting algorithm is therefore complicated.

Nonlinear iteration
As with many other nonlinear problems, it is not generally possible to solve

the nonlinear Stokes equation we consider here using only a Newton iteration.
Rather, we use a strategy where we use the following sequence to solve the non-
linear Stokes problem in each time step:

1. We always use one initial Picard step. That is, we solve the original
Stokes equations in which we “freeze” all coefficient using values for the
strain rate and pressure extrapolated from previous time steps; this cor-
responds to solving Q(X̃)X1 = b(X̃) (in analogy to (2.8)) where X̃ is the
extrapoled solution. This allows us, in particular, to enforce the correct
boundary conditions on all boundaries where the velocity is prescribed.

2. We then solve NDC ≥ 0 steps using the Picard method written in Defect
Correction (DC) form. This corresponds to equation (2.12) if one were to
omit all terms that contain derivatives of η in the definition of the blocks
in (2.14)–(2.16). Equivalently, this corresponds to solving an update form
of (2.8), namely Q(Xk )δXk = b(X)−Q(Xk )Xk =−rk followed by com-
puting Xk+1 = Xk +δXk . It is well-known that the Picard iteration is
more stable than a pure Newton method and often converges even in
cases where Newton’s method does not. It therefore allows us to compute
an iterate close enough to the exact solution from which we can then suc-
cessfully start the Newton iteration. (For this second set of iterations, we
use the defect correction form because the updates δXk then have a zero
velocity on all boundaries where the velocity is prescribed.)

3. We continue with full Newton steps, i.e., we attempt to solve the unmod-
ified Newton equations stated in (2.12) with blocks defined as in (2.14)–
(2.16). We know that these equations will eventually lead to quadratic
convergence, but they may not be symmetric, positive definite, or even
solvable. Consequently, the linear solvers we will discuss in the next sub-
section may fail to converge.

4. If the linear solver failed in one of the previous, unmodified Newton
steps, we continue with Newton-like steps that modify the matrix blocks
as shown in (2.14)–(2.16) by the methods of Sections 2.3.4 and 2.3.5. By
construction, the resulting linear system is then guaranteed to be invert-
ible, and indeed our linear solvers always succeed in our experiments.
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These iterations are terminated once the nonlinear residual ‖rk‖ has been re-
duced by a user-defined factor compared to the starting nonlinear residual at
the beginning of each time step. We use a line search (see Kelly (1995)) to deter-
mine an acceptable step length for all Newton-type steps to further globalize
convergence.

In addition to the outline above, we have tried a method suggested to us
by Riad Hassani (personal communication, 2017) in which the switch-over be-
tween Picard defect-correction iteration as defined above in (ii) (correspond-
ing to using a Newton matrix in which we have dropped all terms involving
derivatives of the coefficients) and Newton iterations (i.e., the same blocks but
including the derivative terms) is done gradually by scaling the derivatives in
overall iteration k by a factor ck between zero and one. We will in the rest of
this paper refer to this as the Residual Scaling Method (RSM). The initial NDC

iterations can then be interpreted as using ck = 0, after which we choose

ck = max

(
0.0,1− ‖rk‖

‖rNDC‖
)

where rk is the current nonlinear residual and rNDC the residual in the first iter-
ation after switching to the Newton or Newton-like method. This choice guar-
antees that ck ≈ 1 once Newton’s method has reduced the residual significantly,
i.e., once we are close to the solution.

This variation often allows us to choose NDC smaller, i.e., to try a method
with a faster convergence rate earlier in the process. On the other hand, it
sometimes requires more Newton-type iterations. Using this variation leads
to somewhat mixed improvements over the strategy outlined above, as will be
shown in our numerical results below.

Linear solvers
Regardless of whether we solve the Picard or any of the Newton-type prob-

lems above, we always end up with having to solve a linear system with the
same block structure as (2.13) in each nonlinear step. This problem may or may
not be symmetric, and the top left block Juu may or may not be positive def-
inite. However, regardless of the these details, we use variations of the solvers
discussed in Kronbichler et al. (2012) and Heister et al. (2017) to solve the linear
problem.

More specifically, we use F-GMRES as the outer solver, with the following
matrix as a preconditioner:

P −1 =
(ã(Juu)−1 ã(Juu)−1JupS̃−1

0 −S̃−1

)
, (2.19)
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where a tilde indicates an approximation of the matrix under the tilde, and S =
Jpu(Juu)−1Jup is the Schur complement of the system. Specifically, motivated
by the discussions in Kronbichler et al. (2012) and Heister et al. (2017), we use
the following approximations for each of these blocks:

• ã(Juu)−1: We approximate this matrix using either one multigrid cycle or a
full solve with an approximation J̃uu of Juu that is constructed in a sim-
ilar way as discussed in Kronbichler et al. (2012). In addition, because
both multigrid and the Conjugate Gradient method used here require
J̃uu to be symmetric and positive definite, we always apply the modi-
fications of Sections 2.3.4 and 2.3.5, even if they are not applied to Juu

itself.

• S̃−1: This block is an approximation to the inverse of the Schur com-
plement S = Jpu(Juu)−1Jup . Like for the original Stokes problem,
the appropriate approximation is to use S̃−1 = M−1

p where (Mp )i j =(
ϕ

p
i , 1

η(ε(u))ϕ
p
j )

)
is the mass matrix on the pressure space scaled by the

inverse of the viscosity; the inversion of Mp is facilitated by a Conjugate
Gradient solve.

The approximation S̃−1 =M−1
p is known to be good if Jpu = (Jup )T, see

Silvester and Wathen (1994). On the other hand, this is not the case if the
viscosity depends on the pressure, given the additional term in (2.15).
However, the difference between the two matrices is small if the viscosity
does not strongly depend on the pressure. This is, in fact, a commonly
made assumption, at least for deep Earth mantle models, though it may
not be valid for crustal models that employ pressure-dependent plasticity
models.

It is conceivable that one can construct a better approximation S̃−1 for
S−1 – leading to fewer outer F-GMRES iterations – by also incorporating
the viscosity derivative terms somehow, but we did not pursue this direc-
tion as it is tangential to the purpose of this paper.

It is, in general, not necessary to solve the linear systems in the first few non-
linear iterations with high accuracy. Rather, without significant loss of nonlin-
ear solver performance, one can solve with a loose tolerance and terminate F-
GMRES substantially earlier. Consequently, we have implemented both choice
one and two of Eisenstat and Walker (1996) for stopping criteria for the linear
solver, where for choice 2 we followed Kelly (1995) in using γ = 0.9 and α = 2.
For the definition of these symbols see the original paper. We noticed for some
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of the problems that the difference between these two approaches where sig-
nificant, where the first choice allowed for a much loser tolerance. Eisenstat
and Walker (1996) stated that choice one represents a direct relation between
the Newton right hand side F and its local linear model at the previous nonlin-
ear iteration, while choice two is only an approximation of this. Therefore we
have chosen the first of these approaches for this paper.

Computation of derivatives
Implementations of Newton solvers require concrete implementations of

the formulas for the derivatives ∂η(ε(u))
∂ε and ∂η(ε(u))

∂p . These can be computed ei-
ther using simple finite differencing approaches or analytically. Fortunately,
even for relatively complicated material models, exact formulas for these
derivatives can be derived with modest effort. Examples for the material mod-
els we consider in our numerical results below are provided in Appendix 2.8.

2.4 Numerical experiments using common benchmarks
In this section, let us illustrate the performance of the methods layed out

above, using several benchmarks that vary both in which specific elements of
the solver they test as well as in the difficulty they present to solvers. In partic-
ular, we will assess whether and how fast different variations of our algorithms
converge. This includes ensuring that the nonlinear residual can be reduced to
any small value desired. Furthermore, we will investigate optimal values and
relative trade-offs for a variety of parameters that affect the nonlinear solver
scheme, as discussed in Section 2.3.6.

The benchmarks we describe here have all been used for similar purposes
in the literature. Details of all of our experiments are, sometimes in a simplified
form, also part of the ASPECT test suite. All codes necessary to run these ex-
periments are available among the benchmarks included in ASPECT releases
starting from version 2.1. The ASPECT repository can be found at
https://github.com/geodynamics/aspect.

2.4.1 Nonlinear channel flow
The simplest nonlinear Stokes flow one can think of is probably a gener-

alization of incompressible Poiseuille flow to include a strain-rate dependent
viscosity. In it, one forces a fluid through a pipe or channel where the velocity
is zero at the pipe sides and in- and outflow velocities are prescribed in such
a way that the result is a flow field parallel to the pipe axis and constant in the
along-pipe direction. The across-pipe variation of the velocity field can then
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be computed easily once a rheology law is chosen, leading to an analytically
known flow field from which the in- and outflow boundary conditions can also
be drawn either via prescribed velocities or prescribed tractions.

A visualization of the solution can be found, for example, in Gerya (2010);
Turcotte and Schubert (2002).

Setup. We use the two-dimensional benchmark setup of Gerya (2010, Section
16.4). In it, the viscosity is chosen in accordance with a power law approach as

η(ε(u)) =C− 1
n [2 I2(ε(u))]

1
n −1

=C− 1
n

[
2

√
1

2
ε(u) : ε(u)

] 1
n −1

=
[p

2
] 1

n −1
C− 1

n ‖ε(u)‖ 1
n −1, (2.20)

using the definition of the second invariant found in Gerya (2010, p. 59, equa-
tion (4.14)). Here, C is a prefactor, and n is a stress exponent that allows for easy
tuning of the nonlinearity of the problem. The model geometry we use here is
a box of 10,000 m by 8,000 m, subdivided into 16×16 cells; we use quadratic
finite elements for the velocity.

Results. Figures 2.1 and 2.2 show results for a number of methods and set-
tings when the in- and outflow boundary conditions are either prescribed
through tractions or velocity values. The latter turns out to generally be a more
difficult problem to solve, but all methods eventually converge to a residual
whose size is related to the tolerance with which we solve the linear systems.

Figures 2.1 shows that for this problem, when boundary values are given
as tractions, line search is neither necessary nor useful, and similarly it is not
necessary to run many initial Picard iterations to get close enough to the solu-
tion for the Newton method to start working. In addition, the Newton matrix
modifications of Section 2.3.5 (right two panels of Fig. 2.1) actually destroy the
quadratic convergence rate of Newton’s method and result in only linear con-
vergence as speculated at the beginning of Section 2.3.6 – though with a sub-
stantially better linear rate than Picard iterations.

On the other hand, Fig. 2.2 shows that for the more complicated problem
when the flow is driven by prescribed velocity boundary conditions, either a
line search method or sufficiently many initial Picard iterations are necessary
to achieve convergence. Alternatively, the matrix modifications also yield a
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Figure 2.1: Nonlinear channel flow benchmark: Convergence history for several methods for a
rheology with n = 3 where in- and outflow are described by prescribing the traction. Top row:
Computations in which we switch abruptly from Picard iterations to Newton iterations. Bottom
row: With the Residual Scaling Method (RSM) in which we switch continuously between the
Picard iteration and the Newton method. Left column: Unmodified Newton iterations. Right
column: Results where we applied the modifications of Sections 2.3.4 and 2.3.5 to the Newton
matrix. Horizontal axes: Number of the nonlinear (outer) iteration. Vertical axes: Nonlinear
residual.

convergent scheme. The Residual Scaling Method (RSM) in conjunction with
the matrix modifications appears the most robust method, though not always
the fastest. Indeed, as explained in Appendix 2.8.1, a stress exponent of n = 3
causes the matrix modifications to always scale down the derivative terms in
the Newton matrix, resulting in a similar effect as the RSM.

In all cases, a pure Picard iteration always converges linearly, though at a
rate that is not competitive with well-designed Newton iterations.

2.4.2 Spiegelman et al. benchmark
The Spiegelman et al. benchmark (see Spiegelman et al. (2016)) is an ex-

tended form of the brick benchmark of Lemiale et al. (2008) and focuses on
solving for the behavior of a material with plastic rheology under compression.

Setup. The benchmark specifies two layers, see Fig. 2.3. The lower layer,
which includes a regularized weak seed, has a constant viscosity. The upper
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Figure 2.2: Nonlinear channel flow benchmark: Convergence history for several methods for a
rheology with n = 3 where in- and outflow are described by prescribing the velocity. Panels as in
Fig. 2.1.

layer has a viscosity given by the harmonic mean ηeff = η1ηp

η1+ηp
. Here, η1 is the

background viscosity of the upper layer, and

ηp = A+B(plith +αp ′)
2 I2(ε(u))

,

where plith is the depth dependent lithostatic pressure and p ′ = p −plith is the
dynamic component of the total pressure. η1 can have three different val-
ues: 1e23, 1e24 and 5e24 Pa s. For von Mises plasticity, one would choose
A =C ,B = 0 where C is the cohesion of the material; in this case, the viscosity is
strain-rate but not pressure dependent. For a depth-dependent von Mises-type
model, one would choose A = C cos(φ),B = sin(φ),α = 0 where φ is the fric-
tion angle; in this case, the viscosity depends on the static, lithospheric pres-
sure but not the dynamic pressure component. Finally, Drucker-Prager plas-
ticity fits this formula with A = C cos(φ),B = sin(φ),α = 1 where the viscosity
now depends on both the strain rate and the (total) pressure p = plith +p ′. We
will only consider the von Mises and Drucker-Prager cases of the Spiegelman
benchmark because these are the most interesting ones.

The benchmark is completed by prescribing an inbound velocity (2.5, 5 and
12.5 mm/yr) on the two sides of the geometry, requiring tangential flow at the
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Figure 2.3: Spiegelman et al. benchmark: Depiction of the strain rate and velocity field (top),
viscosity (bottom left) and the SPD factorα (bottom right) as a result of the deformation induced
by the prescribed horizontal velocity on the sides of the domain. The results shown here are for
the case where the velocities are 5mm/year (the color bar shows it in m/s, ηref = 1024 Pas, the
angle of internal friction is 30◦ and the mesh consists of 1024×256 cells. This is one of the more
difficult cases (Drucker-Prager) of the benchmark, and the data shown here are the result of
simulations that are only converged to a relative nonlinear residual of about 10−6.

bottom, and no stress at the top, allowing material to leave the domain. The
three options for the inbound velocity and the three options for the reference
background viscosity together form a set of nine test cases whose difficulty in-
creases with velocity and reference background viscosity. In the original pa-
per, an unstructured grid of stable Taylor-Hood elements was used. Based on
their Fig. 1, the results shown there should, based on the length of the edges,
correspond to a uniform ASPECT mesh that has been refined globally approx-
imately 7 or 8 times (i.e., 512×128 or 1024×256 cells). This does not, however,
account for details of the unstructured mesh used in Spiegelman et al. (2016).

Results. We compare the results of our Newton implementation to the results
of Spiegelman et al. (2016) and the pre-existing Picard solver in ASPECT. The
von Mises case results are quite similar to the results from Spiegelman et al.
(2016); consequently, we will focus on the more difficult Drucker-Prager case.
We have exhaustively explored the space of parameters affecting the nonlinear
solver (see Section 2.3.6) at different mesh resolutions. In general, we found
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Figure 2.4: Spiegelman et al. benchmark: A reproduction of three of the nine pressure dependent
Drucker-Prager cases with a resolution of 64×16 cells (substantially coarser than the resolution
in the Spiegelman et al. (2016)). Top: Results for computations where linear systems are solved
with a relative tolerance of 0.9. Bottom: With a tolerance of 10−8. The initial Picard iteration is
always solved to a linear tolerance of 10−16. Left to right: Different prescribed velocities of u0 =
2.5, 5, and 12.5cm/year and different reference viscsocities of respectively ηref = 1023, 1024 and
5×1024 Pa s . Horizontal axis: Number of the nonlinear (outer) iteration; vertical axis: Nonlinear
residual. DC Picard refers to a Defect Correction Picard iteration, see Section 2.3.6.

that higher mesh resolution (more refinement steps) made the problem more
difficult to solve. As expected, the benchmarks also become more difficult as
the prescribed velocity u0 at the boundary is increased, leading to a larger strain
rate and more pronounced nonlinearity. This is visible in Fig. 2.3 where we also
show the viscosity and the α factor necessary to keep the matrix positive def-
inite. This factor drops to approximately one half in the vicinity of the shear
band – a result consistent with the theoretical considerations discussed in Ap-
pendix 2.8.3.

Figures 2.4 and 2.5 show results obtained for 4 and 8 global mesh refine-
ment steps, corresponding to meshes with 64×16 and 1024×256 cells, respec-
tively. A comparison shows that the problem is indeed more difficult to solve
on the finer meshes. Without enforcing the symmetry and positive definiteness
of the top left block of the Jacobian, the linear solver converges quickly, but also
crashes easily in a number of configurations because the matrix lacks the nec-
essary structural properties; this is particularly the case for u0 = 12.5 mm/year.
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Figure 2.5: Spiegelman et al. benchmark: A reproduction of three of the nine pressure depen-
dent Drucker-Prager cases with a resolution of 1024×256 cells (similar to the resolution in the
Spiegelman et al. (2016)). Panels as in Fig. 2.4.

On the other hand, enforcing these properties on the matrix leads to some loss
in speed of convergence of the nonlinear iterations (because the computed
search direction is no longer second order accurate), though we then also no
longer encountered any linear solver failures.

We noticed that the runs without the matrix modifications are very sensitive
to changes in many of the solver parameters. In the following, let us discuss a
number of settings that we have found useful when working with the unmodi-
fied matrix, though for many cases the linear solver still fails with these settings.
In particular, using a few line search iterations may help reduce the amount of
iterations; however, allowing the step length parameter to decrease too much
generally leads to too small steps and slow overall convergence. A good default
value for the maximum number of line search step length reductions appears to
be 5 or 10. We also found that performing 5–10 Picard iterations before switch-
ing to Newton iterations is a good number. Setting the relative linear tolerance
of the GMRES solver rather strict typically results in fewer outer iterations, but
at the price of more inner iterations that then increase the run time per outer
iteration. A good compromise for this parameter is to require that the linear
residual is reduced to a factor of 0.1 or 0.01 of its initial value. Using the RSM,
i.e., determining the linear solver tolerance automatically, usually requires one
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or two more outer iterations, but greatly decreases the chance that the linear
solver will fail.

On the contrary, enforcing the Juu to be symmetric and positive definite
will yield a very different behavior. As stated above, the linear solver then al-
ways converges. Furthermore, the sensitivity of the convergence history to all
the parameters above is greatly reduced. This has the advantage that a very
loose linear tolerance can be used without a significant penalty in the number
of iterations; that said, and as is apparent from the figures, modifying the matrix
may require tens of nonlinear iterations more to converge.

We have obtained the best performance by combining the two methods: We
do not enforce the symmetry and positive definiteness of the matrix in the first
nonlinear iterations until (if) the linear solver fails; after this, we continue with
the matrix modifications. This strategy combines the fast convergence of the
unmodified method with the stability and robustness of the modified one.

2.4.3 Tosi et al. benchmark
The Tosi benchmark of Tosi et al. (2015) is designed as a community bench-

mark for mantle flow based on nonlinear rheologies featuring a temperature,
pressure, and strain rate-dependent viscosity. Here, we specifically consider
case 4 from Tosi et al. (2015), which seeks the steady state (at a large, unspec-
ified end time) of a time dependent problem. Unlike the two previous bench-
marks, this benchmark has a temperature field that is coupled to the viscosity
and therefore evolves over time.

Setup. The benchmark is posed in a two-dimensional square unit box with
all free slip boundaries and an initial temperature given by T (x, z) = (1− z)+
A cos(πx)sin(πz). The viscosity is chosen as the harmonic mean

η(T, z,ε(u)) = 2

(
1

ηlin(T, z)
+ 1

ηplast(ε(u))

)−1

, (2.21)

where the two components of the viscosity are defined as a linear but depth-
and temperature-dependent viscosity as well as a plastic yield criterion respec-
tively:

ηlin(T, z) = e−γT T+γz z , ηplast(ε(u)) = η∗+ σY

‖ε(u)‖ .

Here, η∗ is the constant effective viscosity at high strain rate, and σY the yield
stress. Numeric values for all of these constants can be found in the original
paper.
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Results. The original paper does not contain convergence plots. Conse-
quently, we can only compare between the methods available in our reference
implementation. Specifically, these are: (i) A method whereby we solve the ad-
vection equation, then the Stokes equation with frozen coefficients, and then
iterate these two steps out until we have reached convergence for the current
time step; we will refer to this scheme as “Picard” even though this stretches the
term (as, strictly speaking, a “Picard” iteration for the coupled system would
solve both the Stokes and advection problem linearized around the previous
solution; in our implementation, the Stokes system is linearized around the
already computed advection solution). In ASPECT, this scheme is called “it-
erated advection and Stokes”. (ii) A method where we first solve the advection
equation and then do one Newton step on the nonlinear Stokes system; again,
these two parts are iterated out in each time step. We will refer to this method
as “Newton”; in ASPECT, it is called “iterated advection and Newton Stokes”.

Figure . 2.6 shows results for this benchmark, where the horizontal axis indi-
cates the number of the nonlinear iteration performed. Each spike corresponds
to a time step starting at a large residual that is gradually decreased. A method
that converges quickly shows a steeper decrease, requires fewer nonlinear iter-
ations, and can consequently fit more time steps (spikes) into the same number
of nonlinear iterations. Because the computational effort is largely confined to
building and solving the linear systems, the horizontal axis also corresponds
closely to the elapsed wall time.

The different panels of the figure can be summarized as follows: (i) The
Newton method converges much faster than Picard iterations. For example,
after the initial few time steps, the Newton method (with and without matrix
stabilization) only requires two nonlinear iterations per time step, whereas the
Picard iteration requires six. This also translates to a speed up in wall time of
around the same factor. (ii) Matrix stabilization is not necessary for this bench-
mark and in fact leads to a slight but not substantial degradation of perfor-
mance. (iii) Convergence behavior can differ substantially between timesteps
(both for Picard and Newton). (iv) For this experiment, the defect correction
form of the Picard iteration is slightly, but not substantially faster than the orig-
inal Picard iteration.

2.4.4 A 3d subduction test case
In order to verify that our implementation is not only applicable to aca-

demic benchmarks, but also to settings that occur in geodynamic modeling, let
us consider a three-dimensional simulation of oceanic plate subduction. The
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Figure 2.6: Tosi et al. benchmark: Nonlinear Stokes residual (vertical axis) as a function of the
number of the nonlinear solves. Each spike corresponds to one time step during which itera-
tions start with a large residual that is gradually decreased until it reaches the desired nonlinear
tolerance of 10−5. No line search is used here. Top: The first 50 nonlinear iterations. Bottom:
Nonlinear iteration 500–600. Left: Linear systems are solved to a relative Linear Tolerance (LT) of
0.9. Right: With a linear tolerance of 0.01. In the top right panel, the results for the two Newton
variations coincide.

model is inspired by the geodynamic setting of the Caribbean region, and sim-
ulates a slab that subducts while the subducting plate has a motion oblique to
the trench which causes the slab to be dragged laterally through the mantle, a
motion called slab dragging (Spakman et al., 2018).

Setup. We situate our test case in a Cartesian box with dimensions of 3000 km
in width and length and 1000 km in depth (see Fig. 2.7). The viscoplastic rheol-
ogy includes dislocation creep, diffusion creep, and plasticity. The viscosity is
then given by

ηeff = max

(
min

{(
1

ηdiff
+ 1

ηdisl

)−1

, ηplastic, ηmax

}
,ηmin

)
(2.22)
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Figure 2.7: A conceptual visualization of the 3d subduction test case setup. The red layer repre-
sents the lithosphere, the yellow layer the upper mantle, and the green layer the lower mantle.
The arrows indicate the lithospheric boundary velocity direction.

Figure 2.8: Right: The viscosity field of the 3d subduction test case after 3.55·106 years, just as the
tip of the subducting slab starts to detach from the rest of the slab. In the left half, two isosurfaces
show where in the bottom half of the model the viscosity equals 3.25 ·1019 and 5.5 ·1019 Pas. In
the right half, colors indicate the viscosity when restricted to areas where the viscosity is greater
than 5 ·1019 Pas, i.e., to cold areas of the upper mantle, as well as the lower mantle.
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where

ηx = 1

2
νx A

− 1
nx

x

[
1p
2
‖ε(u)‖

] 1
nx

−1

exp
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Ex +PVx

nxRT

)
,

ηplastic =
6
(
C cos

(
φ

)+P sin
(
φ

))
p

3
(
3− sin

(
φ

)) 1p
2‖ε(u)‖ .

Here, a symbol of the form �x stands for the corresponding property of either
diffusion (if x = diff) or dislocation creep (if x = disl), ν is a constant factor which
can be used to scale the rheology, R is the gas constant, T is temperature, and P
is pressure. Ax are prefactors, Ex are the activation energies, and Vx are the ac-
tivation volumes. The values of all of these parameters used for the simulations
are listed in Appendix 2.9.

The model consists of two layers, the upper and lower mantle (above and
below 660 km, see figure 2.7), that differ only in strength through a 100-fold in-
crease in ηdiff and ηdisl by choosing νdiff and νdisl larger by a factor of 100 in the
lower mantle. This means that the lithosphere is fully defined by temperature.
This thermal lithosphere is divided into two regions: a U-shaped region repre-
senting an oceanic plate that surrounds a region representing a Large Igneous
Province (LIP), both modeled by a plate (Fowler, 2005) of thickness 95 km and
the ridge far outside the domain. The slab is also 95 km thick and is divided into
three segments in which an analytic temperature field is prescribed following
McKenzie (1970). The first segment is 200 km long with a dip angle relative to
the surface starting with 20° that smoothly steepens to a dip angle of 30°. The
second segment is 150 km long and the dip angle has at the end of the segment
smoothly increased to 70°. The third, straight segment is 50 km long and has
a constant dip angle of 70°. We describe the fault zones between the oceanic
plate and the LIP as thin, vertical regions with an elevated initial temperature.
The U-shaped lithosphere has a prescribed boundary velocity of 1 cm/year in
each component of the horizontal directions (for direction see the arrows on
Fig. 2.7), and zero velocity in the vertical direction. The LIP has a prescribed
boundary velocity of zero in all directions. Below the lithosphere we use open
boundary conditions. The top is a free surface (Rose et al., 2017) and the bot-
tom has a zero velocity boundary condition.

This model is discretized on a mesh that has a total of 153,046 cells, result-
ing in 3,938,115 velocity and 172,097 pressure unknowns (in addition to an-
other 1,312,705 unknowns each for the temperature and a compositional field).
All results shown below were obtained on the Dutch national cluster Cartesius.
Each node is equipped with Intel® Xeon E5-2690 v3 (“Haswell”) processors and
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Figure 2.9: The 3d subduction test case: Nonlinear convergence results for the Picard, Defect
Correction (DC) Picard, and Newton iterations. The horizontal axis shows time steps, with non-
linear iterations depicted at 1

250 = 0.004 increments given that we allow at most 250 nonlinear
iterations per time step. The vertical axis represents the nonlinear relative residual.

has 24 cores; we used 10 nodes and 20 MPI processes per node. The model
is run with a Courant-Friedrichs-Lewy (CFL) number of 0.1 and the time step
size is limited to grow by a maximum of 25% from one time step to the next.
The time step sizes computed by all nonlinear solver methods used below are
essentially identical.

The experiments in previous sections show that it is in general not neces-
sary to solve the linear systems in defect correction schemes (i.e., the defect
correct version of Picard iterations, as well as Newton iterations) particularly
accurately. As a consequence, we only use a linear solver tolerance for these
methods that requires a reduction of the linear residual in the F-GMRES solve
by a factor of 0.1. On the other hand, the initial Picard iteration solves for the
solution, not an update, and consequently requires a substantially larger reduc-
tion of the linear residual; we use a factor of 10−6 (the default value of ASPECT).

Results. We have performed this experiment using our implementation of
the Newton method, as well as the Picard iteration and its defect correction
(DC) variation. In the following, let us provide two perspectives on this com-
parison.

First, Fig. 2.9 shows how all three methods reduce the nonlinear residual
in each time step, for two selected periods of the simulation (from time steps
75 to 100, and 275 to 300). In the early phases of the simulation, all methods
quickly converge the nonlinear residual to the desired tolerance of 10−6, though
even here, the Newton method requires fewer iterations. Interestingly, starting
around time step 275 – corresponding to about 3.92 million years of model time
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Figure 2.10: The 3d subduction test case: Wall clock time necessary to compute up to a certain
time step for the Picard, Defect Correction (DC) Picard, and Newton iterations.

– the problem appears to become substantially more difficult to solve. This
time corresponds to the break-off of the deeper part of the slab (the necking in
Fig. 2.8), which then rapidly sinks, and the increased velocity implies a larger
strain rate and consequently stronger nonlinearity. Indeed, as Fig. 2.9 shows,
both variations of the Picard iteration are then no longer able to converge the
residual to the desired tolerance, even though we allow up to 250 iterations per
time step. Any results of these simulations must then necessarily be suspicious.
On the other hand, the Newton iteration continues to rapidly converge. These
data therefore underline the stability and robustness of the Newton method,
and illustrate that it can solve problems that are otherwise not solvable with
reasonable effort.

A second perspective is shown in Fig. 2.10, where we plot the wall time nec-
essary to solve the problem up to a given time step. The figure demonstrates
that our implementation of Newton’s method is approximately one third faster
than the other two methods for the time steps shown. The difference becomes
particular notable after time step 170, where the subducting slab starts to thin
under its own gravity. We did not include data beyond time step 275 because,
as discussed above, the Picard variants do not converge any more after this
point. Consequently, even though the curves would substantially diverge af-
ter this timestep due to the far larger number of nonlinear iterations taken by
the Picard variants, the solutions would no longer be comparable.

These models mostly use ASPECT’s default parameter values. It is possible
that we could further optimize any of the methods shown by changing these
values. Furthermore, we have also so far not put much effort into optimizing
the efficiency of the Newton solver code itself. That said, both of these issues
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are outside of the scope of the paper.

2.5 Conclusions
Newton’s method is generally considered the best method to solve nonlin-

ear systems, but it is also known to be difficult to make work in practice. In this
contribution, we have demonstrated that a naive application of Newton lin-
earization may lead to a system for the updates δXk that may be ill-posed even
if the original nonlinear problem is well-posed. We have shown how one can
modify the Newton system to guarantee a stable solution of the update equa-
tions. Specifically, we have modified the partial differential operators that give
rise to the Newton matrix so that the matrix is symmetric and positive definite.
Importantly, however, we do not modify the right hand side of the Newton up-
date equation, and consequently the iterates of the modified Newton method
still converge to the solution of the original nonlinear problem. We have also
described the globalization strategies necessary to guarantee that the Newton
method actually converges in nearly all cases, and demonstrated our methods
using standard geodynamic benchmarks and a real application.

The results we have shown demonstrate that with this combination of
methods, Newton’s method (with globalization approaches and stabilization
of the matrix) really is the better choice: It converges more rapidly, in fewer it-
erations, is robust, and takes less computational time. Furthermore, it can be
applied to problems that are known to be very nonlinear and difficult to solve,
such as the Spiegelman et al. (2016) benchmark. Finally, we have applied this
method to a rheologically and geodynamically complex, three-dimensional
case of oceanic subduction that is sufficiently nonlinear that the typical Picard
iteration no longer converges in a reasonable number of steps. The Newton
method we have discussed here not only converges, but does so in relatively
few steps and with substantial savings in wall clock time.

There are, of course, cases where a simple Picard solver would have been
sufficient. In those cases, however, it is worth pointing out that using a Newton
method is not substantially more expensive than a Picard method: The assem-
bly of the Newton matrix is marginally more complicated because of the terms
involving the derivatives of the viscosity, but other than that the solution pro-
cedure is the same between the two methods because of the structurally very
similar matrices involved. Consequently, it is reasonable to advocate for always
using a Newton method instead of Picard iterations.
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2.7 Appendix A: The connection between elliptic
operators, well-posedness of the Newton update
equation, and eigenvalues of coefficients

The discussion in Section 2.3.5 made use of the fact that a positive definite
coefficient H spd in the definition of the Juu block of the matrix implies that the
underlying differential operator is elliptic, and that consequently theJuu block
is invertible. Since this connection is not obvious unless one works daily with
partial differential equations, let us discuss this step in slightly more detail in
this appendix.

To this end, let us first note that we call an operator A acting on functions
u, v ∈ V (where V is a function space) bounded and coercive if there are con-
stants c > 0,C <∞ so that the following two conditions are satisfied:

boundedness: 〈u,A v〉 ≤C ‖u‖V ‖v‖V ∀u, v ∈V ,

coercivity: 〈u,A u〉 ≥ c ‖u‖2
V ∀u ∈V.
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Here, 〈·, ·〉 is the inner (or duality) product in V . It is well known from the theory
of partial differential equations that such operators lead to unique solutions of
the equation A u = f , see Brenner and Scott (2002).

In the context of second order partial differential operator – such as the one
that governs the top-left block of the Stokes problem –, an operator of the form
A u =−div[Hε(u)] acting on a velocity field u ∈V = H 1

0 (Ω)d is said to be elliptic
if there exists c1 > 0 so that

τ : (Hτ) ≥ c1‖τ‖2 (2.23)

for all symmetric tensors τ. Here, E is the rank-4 tensor that maps strain
rates to stresses. For such operators, we have by integration by parts that
〈u,A v〉 = (ε(u), Hε(v)) = ∫

Ω ε(u) : [Hε(v)]. It is then easy to see that ellipticity

implies coercivity by recognizing that ‖v‖V = ‖v‖H 1
0 (Ω)d = (∫

Ω |v|2 +
∫
Ω |∇v|2)1/2

and knowing that c2‖v‖V ≤ ‖ε(v)‖ ≤ c3‖v‖V for some constants c2 > 0, C3 <∞.
In other words, if the coefficient H inside the differential operator satisfies

condition (2.23), then the associated operator is well posed and invertible. This
condition carries over to the case where we let V be a finite dimensional sub-
space of H 1

0 (Ω)d – for example, the set of all finite element functions defined on
a mesh.

The important realization is now that the constant c in (2.23) equals the
smallest eigenvalue of H where we consider H as an operator that maps a sym-
metric tensor to a symmetric tensor. To see this, assume that H had a negative
or zero eigenvalue λ. Then, we can choose σ as the corresponding eigenvector
and obtain that σ : (Hσ) = σ : (λσ) = λ‖σ‖2 ≤ 0, in violation of (2.23). Conse-
quently, (2.23) can only be satisfied if all eigenvalues of H are positive.

This argument proves that if all eigenvalues of H are positive, then A u =
−div[Hε(u)] is elliptic and consequently coercive, and as a result the top left
block Juu of the matrix is positive definite and invertible.

It may be of interest to note that the operator A may be invertible even
if it is not elliptic, i.e., it is only sufficient but not necessary that H only have
positive eigenvalues. However, it is much more difficult to specify the exact
conditions that have to hold for H to ensure that A is invertible, and we will not
attempt to do so here. This is particularly true if H = H(x) is spatially variable
with eigenvalues that may also be different from one location to another.

2.8 Appendix B: A look at some common rheologies
The results of Section 2.3.4 and 2.3.5 were obtained for general rheologies in

which the viscosity is a function of the strain rate ε(u) and possibly the pressure
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p. However, if we know the specific form of this dependence, we can say more
about whether or not it is necessary to symmetrize the matrix, and/or whether
it is necessary to use a scaling factorα that is less than one. In the following, we
will consider some common rheologies from this perspective.

2.8.1 Power law rheology
Some of the simplest rheology are of power law type where the viscosity is

defined as

η(ε(u)) = η−
1
n

0

(√
1

2
ε(u) : ε(u)

) 1
n −1

= η−
1
n

0 2
1
2− 1

2n
(‖ε(u)‖2) 1

2n − 1
2 ,

with n ≥ 1. The form on the right shows that the viscosity is a function of the
square of the norm of the strain rate. This implies that the matrix is automat-
ically symmetric and does not have to be explicitly symmetrized with the pro-
cedure of Section 2.3.4.

Furthermore, we can compute the derivative of the viscosity with respect to
the strain rate and obtain

∂η(ε(u))

∂ε
= η−

1
n

0 2
1
2− 1

2n

(
1

2n
− 1

2

)(‖ε(u)‖2) 1
2n − 1

2−1
2ε(u) = η(ε(u))

(
1

n
−1

)
ε(u)

‖ε(u)‖2 .

Identifying a = ε(u) and b = ∂η(ε(u))
∂ε as in Section 2.3.5, we see that the impor-

tant term in the scaling factor definition (2.18) is[
1− b : a

‖a‖‖b‖
]2

‖a‖‖b‖ = [1− (−1)]2
∣∣∣∣ 1

n
−1

∣∣∣∣ η= 4

(
1− 1

n

)
η.

It is clear that this term grows with n towards a value of 4η and will eventually
exceed its limit csafety2η as defined in (2.18). In particular, even if we choose
csafety = 1 (i.e., allow the smaller eigenvalue of H spd to be equal to zero, then the
condition will only be satisfied for n ≤ 2, i.e., if the strain weakening is not too
pronounced. For smaller values of csafety, we can only choose α= 1 if n is even
less than that – for example, with csafety = 0.9, the condition is only satisfied
only if n. 1.82.

It is interesting to note that the condition is independent of the the flow
field – what value α one has to choose is entirely decided by n and csafety,
and α will be the same at every quadrature point at which we integrate the
bilinear form. Indeed, for this class of material model, we need to choose
α= min

{1
2 csafety

n
n−1 ,1

}
.
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2.8.2 Drucker-Prager rheology
For Drucker-Prager rheologies, the viscosity in 2D is typically given by

η(ε(u)) = C cosφ+p sinφ

2
√

1
2ε(u) : ε(u)

= C cosφ+p sinφ

2
√

1
2

(‖ε(u)‖2)−1/2
.

Here, C is the cohesion and φ the friction angle. As for the power-law case, the
viscosity only depends on ‖ε(u)‖2 and we know that the resulting matrix will
always be symmetric.

By comparing the formula for η with the one from the power law rheology
above, we see that up to a different (and possibly pressure dependent) pre-
factor, the Prager-Drucker law corresponds to a power law with n =∞. Thus,
we expect that we will have to choose α< 1 in (2.18). Indeed, we can compute
that

∂η(ε(u))

∂ε
=−η(ε(u))

ε(u)

‖ε(u)‖2 ,

which matches the corresponding formula for the power law with n =∞. Thus,

[
1− b : a

‖a‖‖b‖
]2

‖a‖‖b‖ = [1− (−1)]2 |−1| η= 4η,

which is of course never less than 2η and consequently always violates the nec-
essary condition in (2.18) to choose α = 1. In other words, we can expect that
the original Newton method will always lead to an ill-posed equation for the
Newton update. On the other hand, (2.18) tells us that the choice

α= 1

2
csafety

will always lead to a well-posed equation with csafety < 1.
It is interesting to note that for both the power law rheology with large n

and the Prager-Drucker rheology, one always needs to choose α < 1. This im-
plies that the equations that define our stabilized Newton update are never the
derivative of the residual, and we can consequently not expect quadratic con-
vergence. As the calculations above show, this has, in fact, nothing to do with
the concrete test case or setup: the choice of α does not depend on the value
of the strain rate or other solution variables at a given point, but is the same
throughout the entire domain.
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2.8.3 The rheology of the Spiegelman et al. benchmark
To demonstrate thatα does not need to be constant throughout the domain

and may, in fact, depend on the flow field, we need to consider a rheology in

which ∂η
∂ε : ε is not a fixed multiple of the viscosity as in the last two cases. This

is indeed the case for the rheology of the benchmark by Spiegelman et al. dis-
cussed in Section 2.4.2. There, the viscosity is – up to a factor of 2 – given by the
harmonic average of a linear rheology and the Drucker-Prager model consid-
ered above:

η(ε(u)) = 1
1
ηref

+ 1
ηDP(ε(u))

= ηref ηDP(ε(u))

ηref +ηDP(ε(u))

where ηref is a constant reference viscosity and ηDP(ε(u)) is the viscosity com-
puted with the Drucker Prager rheology as shown above. The derivative of this
equation is easily computed using the formulas from the previous section:

∂η(ε(u))

∂ε
= η2

ref(
ηref +ηDP(ε(u))

)2

∂ηDP(ε(u))

∂ε
=− η2

ref ηDP(ε(u))(
ηref +ηDP(ε(u))

)2

ε(u)

‖ε(u)‖2

=− η(ε(u))2

ηDP(ε(u))

ε(u)

‖ε(u)‖2 .

Since this expression is again proportional to ε(u), the matrix Juu is again sym-
metric by construction, but not necessarily positive definite unless the expres-
sion[

1− b : a

‖a‖‖b‖
]2

‖a‖‖b‖ = [1− (−1)]2 η(ε(u))2

ηDP(ε(u))
= 4

η(ε(u))

ηDP(ε(u))
η(ε(u))

is less than csafety2η(ε(u)). It is obvious that this is the case exactly if

η(ε(u))

ηDP(ε(u))
≤ 1

2
csafety,

which is equivalent to the condition ηDP(ε(u)) ≥
(
1+ 2

csafety

)
ηref. This condition

makes sense since large values of ηDP (compared to ηref) yield a roughly con-
stant viscosity η(ε(u)) ≈ ηref for which the negative contributions to Juu are
small and we can consequently choose α= 1.

On the other hand, if the condition above is not satisfied, then (2.18) tells
us that we need to choose α = 1

2 csafety
ηDP(ε(u))
η(ε(u)) = 1

2 csafety
ηref+ηDP(ε(u))

ηref
. Because

this comparison does not simplify to anything that is independent of ε(u), the
factor α that ensures positive definiteness will in general be spatially variable.
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It is worth noting that the choice forα above is consistent with the results of
the previous section. Namely, if one chooses ηref =∞, then the viscosity of this
section equals the Prager-Drucker rheology. In that case, first, the condition

ηDP ≥
(
1+ 2

csafety

)
ηref can never be satisfied; and second, the choice for α just

derived simplifies to α = 1
2 csafety, which is exactly the value we have obtained

for the Prager-Drucker rheology before. Fig. 2.3 also nicely shows that this is
exactly the behavior we get in the benchmark: Where the strain rate is large,
α drops to one half, whereas it is close to or exactly one in areas where the
viscosity is dominated by the background viscosity.

2.8.4 The rheology of the Tosi et al. benchmark
Similar considerations also hold for the rheology used by the benchmark by

Tosi et al. considered in Section 2.4.3. Indeed, based on the definition in (2.21)
and repeated application of the chain rule, we have that

∂η(ε(u))

∂ε
= 2

(
1

ηlin
+ 1

ηplast(ε(u))

)−2 (
ηplast(ε(u))

)−2 ∂ηplast(ε(u))

∂ε

=−2

(
1

ηlin
+ 1

ηplast(ε(u))

)−2 (
ηplast(ε(u))

)−2 σY

‖ε(u)‖
ε(u)

‖ε(u)‖2

=−1

2

(
η(ε(u))

ηplast(ε(u))

)2 (
ηplast(ε(u))−η∗) ε(u)

‖ε(u)‖2 ,

where we have omitted the dependence of η on T, z for the moment because it
is not relevant to our considerations. Since this expression is again proportional
to ε(u), the matrix Juu is again symmetric by construction, but not necessarily
positive definite unless the expression[

1− b : a

‖a‖‖b‖
]2

‖a‖‖b‖ = 2

(
η(ε(u))

ηplast(ε(u))

)2 (
ηplast(ε(u))−η∗)

is less than csafety2η. As in the previous section, the factor α that ensures posi-
tive definiteness will in general again be spatially variable.

2.9 Appendix C: Parameters for the 3d subduction test
case

The following table provides the numeric values of all material parameters
used in the subduction example shown in Section 2.4.4:
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thermal conductivity (W m−1 K−1) 4
specific heat capacity (J kg−1 K−1) 1250

reference temperature (K) 273.0
reference densities (kg) 3300

initial viscosity (Pa s) 1020

cohesion C (Pa) 20 ·106

angle of internal friction φ (°) 30
dislocation stress exponent ndisl 3

dislocation prefactor Adisl (Pa−n s−1) 3.12504 ·10−14

dislocation activation energy Edisl (J mol−1) 4.3 ·105

dislocation activation volume Vdisl (m−3 mol−1) 25 ·10−6

diffusion stress exponent ndiff 1
diffusion prefactor Adiff (Pa−n s−1) 1.92 ·10−11

diffusion activation energy Ediff (J mol−1) 335 ·103

diffusion activation volume Vdiff (m−3 mol−1) 4 ·10−6

minimum viscosity ηmin (Pa s) 1019

maximum viscosity ηmax (Pa s) 1024

In addition, we choose dimensionless scaling factors νdisl = νdiff = 1 in the
upper mantle, and νdisl = νdiff = 100 in the lower mantle.
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3.1 Abstract
The Geodynamic World Builder is an open source code library intended to

set up initial conditions for computational geodynamic models in both Carte-
sian and Spherical geometries. The inputs for the JSON-style parameter file
are not mathematical, but rather a structured nested list describing tectonic
features, e.g. a continental, an oceanic or a subducting plate. Each of these tec-
tonic features can be assigned a specific temperature profile (e.g. plate model)
or composition label (e.g. uniform). For each point in space, the Geodynamic
World Builder can return the composition and/or temperature. It is written in
C++, but can be used in almost any language through its C and Fortran wrap-
pers. Various examples of 2D and 3D subduction settings are presented. The
World builder comes with an extensive online User Manual.

3.2 Introduction
Geodynamic modelling has been used in the past four decades to help us

better understand the physical processes of Earth’s interior including large-
scale mantle convection and plate tectonics, or detailed processes of crustal de-
formation. Numerical modelling of geodynamic processes involves solving the
pertinent partial differential equations (PDEs) of mass, momentum and energy
conservation supplemented with rheological laws, material parameters and
with an equation of thermodynamic state relating, e.g., density, temperature
and pressure (e.g. Gerya, 2010; Schubert et al., 2001). In addition these PDEs
must be constrained by boundary conditions, which can be time-dependent,
and by initial conditions which describe the starting model for solving the geo-
dynamic problem at hand. For example, 3D initial models of a geometrically
simplified nature are often constructed for modelling of generic subduction
evolution using plate boundaries and lithosphere domains that are parallel to
the sides of the (rectangular) model domain (e.g. Yamato et al., 2009; Stegman
et al., 2010b; Brune and Autin, 2013; Schellart and Moresi, 2013; Duretz et al.,
2014; Holt et al., 2015; Leng and Gurnis, 2015; Naliboff and Buiter, 2015; Ki-
raly et al., 2016; Schellart, 2017). When numerically simulating (regions of) the
Earth, geometrically more complex initial models are required, e.g., involving

This paper has been submitted to Solid Earth as The Geodynamic World Builder: a solution
for complex initial conditions in numerical modelling, M. Fraters, C. Thieulot, A. van den Berg
and W. Spakman.
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the starting plate-tectonic layout, initial trench geometry and slab shape for
use either instantaneous dynamics modelling or as initial model for modelling
of subduction evolution (e.g. Alisic et al., 2012; Liu and Stegman, 2011; Jadamec
and Billen, 2010, 2012; Chertova et al., 2014a; Billen and Arredondo, 2018; Zhou
et al., 2018). Such initial model setups cannot be easily created, adapted, or
shared with the community, nor easily transferred to another code. We present
in this paper a solution to these problems in the form of an open source code
library, the Geodynamic World Builder, which has been designed to be user-
friendly, extensible, and portable across different platforms. We present the
first stable version of the World Builder which focuses on creating geometrically
complex 3D initial models (geometry, composition, and temperature) consist-
ing of first-order plate tectonic features such as continental and oceanic plates,
oceanic ridges and transform faults and 3D lithosphere subduction. These con-
figured initial models are intended to help advance research into simulations of
instantaneous dynamic modelling and of plate tectonic evolution with a wide
range of geometric complexity.

3.3 Geodynamic World Builder Philosophy
3.3.1 User Philosophy

In this section we describe the philosophy of how tectonic features such as
plates, ridges, faults and slabs can be parameterized by lines and areas that im-
plicitly define volumes to which temperature and composition can be assigned.
A composition is a part of the model that is assigned a particular identifying la-
bel and in addition an indicator which is given a value between 0 and 1. This
indicator can be used by codes using the GWB output to ascribe physical prop-
erties to different model regions.

To minimize user effort, the Geodynamic World Builder (GWB) utilizes a pa-
rameterization of 3D structures by 2D coordinate input, by defining their (pro-
jected) location on the surface. The GWB can be used to create initial models
in Cartesian and spherical geometries.

User input files should be specified in JSON (json.org), which is an
internationally standardized language (ISO/IEC 21778). We use a relaxed
form of JSON which allows comments, NaN’s and tailing commas to im-
prove usability through RapidJSON (http://rapidjson.org/). The user in-
puts coordinates and can assign particular properties to features such as ’lin-
ear’ for a temperature profile, or ’uniform’ for the compositional makeup of
the plate. Note that only a subset of the options is mentioned in this pa-
per. We refer to the online Geodynamic World Builder Manual (https://
geodynamicworldbuilder.github.io) for the complete listing.
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The GWB uses a hierarchical overlay of features. This means that features
defined first are spatially overlain by features defined later in places where both
overlap. The GWB recognizes two types of features: area features and line fea-
tures, which will be explained in the following sections. A possible third type of
features, point features, will be discussed in section 3.5.

Continental lithosphere plate
A continental plate is an ’area feature’ in the GWB and is defined by its sur-

face perimeter and its thickness. The perimeter is specified as a list of points
which enclose the continental area. Within the defined volume of the conti-
nental plate, the GWB offers various options for defining temperature values
and compositions. For example, a continental plate can be assigned multiple
layers of different compositions and a linear geotherm that matches a prede-
fined adiabatic mantle temperature at the base of the lithosphere. We note that
continental lithosphere with a variable thickness is a development for future
releases of the GWB, but can be mimicked in the present version by specifying
contiguous continental areas with different thickness. Also, continental topog-
raphy is currently not explicitly implemented, but it can be achieved through
a sticky air approach, where air is a composition of varying thickness atop the
model (Schmeling et al., 2008; Crameri et al., 2012).

Oceanic lithosphere plate
Like the continental plate, the oceanic plate is parameterized as an area fea-

ture with a flat surface. We have implemented the ’plate model’ (e.g. Fowler,
2005) for assigning an age-dependent temperature to oceanic lithosphere. In
section 3.4.1 we will show an example of a ridge-transform system with ridge
jumps. The workaround for implementing oceanic bathymetry is the same as
for the continental lithosphere plate.

The mantle
The upper and lower mantle can also be parameterized as an area feature

that starts below the lithosphere or at the surface and is overlain by lithosphere
in a later building stage. This allows for defining a upper and lower mantle and
to insert specific volumetric structures such as Large Low Shear wave Velocity
Provinces (LLSVPs) at the core-mantle boundary. In the present version these
mantle features can be assigned a radially uniform, linear or adiabatic tem-
perature profile. Future versions may include laterally varying temperature or
compositions, e.g. scaled from seismic tomography models (e.g. Steinberger
et al., 2015).
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A subducting plate
A subducting plate is a ’line feature’ in the GWB and is defined by the lo-

cation of the trench and one or more depth segments each describing a part
of the geometry of the subducting slab. They are defined by a length and by
thicknesses and dip angles at beginning and end of the slab segment. In se-
quence, these segments can makeup a smoothly varying slab geometry which
can for example flatten in the upper mantle transition zone, or may prescribe
a slab entering the lower mantle. Every point in the trench coordinate list de-
fines a vertical section of the subducting plate that may consist of one or sev-
eral slab segments. Both sections and segments can vary in length, dip an-
gle or thickness. The length of a subducting slab is always computed as the
length along the top of the slab so that this can straightforwardly represent the
amount of relative plate convergence during a certain period. The dip angle is
defined as the angle between the surface and the local plunge of the slab. The
dip angle is specified at the start and end point of each depth segment along
the vertical section. Dip angles are linearly interpolated along a segment. The
overall direction of slab dip can be to either side of the trench and is selected
by specifying for each subducting plate an additional point at the surface, the
’dip-point’, at the slab dip-side of the trench segment. Slab dip is linearly in-
terpolated between subsequent vertical slab segments. This parameterization
allows for constructing smoothly varying 3D slab morphology. Note that it is
also possible to give slabs a starting depth to configure detached slabs.

For each point at the surface of the slab the depth and the distance to the
trench, as measured along the surface, are available and can be used to assign
slab temperatures, e.g., by using the McKenzie (1970) slab temperature model.

A fault
To allow for complicated fault shapes (e.g. listric faults), faults are also pa-

rameterized as line features. An important difference between faults and sub-
ducting plates is that for subducting plates the trench defines the top of the
plate at the plate boundary, while for faults the line feature defines the center
of the fault with respect to which a fault thickness can be defined.

3.3.2 Code philosophy
The following design principles define the Geodynamic World Builder:

1. A single text-based input file centered around plate tectonic terminology:
as explained in Section 3.3.1. The particular syntax is specified in the
online manual and will be illustrated with examples below.
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2. Code-, language-, and platform-independence: The GWB is designed to
be integrated in the different geodynamic codes through a simple inter-
face. The library is written in C++, has official interfaces (wrappers) to C
and Fortran and it is possible to call the GWB from the command line.
Note that the C wrapper enables calling the GWB from almost any other
language like Python and Matlab. The code is continuously tested with
every change on the Linux, OSX and Windows operating systems.

3. Up-to-date user manual and code documentation. Manual and doxygen
http://doxygen.nl/ code documentation provided through https://
geodynamicworldbuilder.github.io.

4. Safe use in parallel codes: The GWB is split into two phases. The setup
phase, encapsulated in the function create_world, is not thread safe but
upon completion the generated "world object" is thread-safe and can be
used to query temperature and compositions in parallel.

5. Readable and extensible code: Following ASPECT (Kronbichler et al.,
2012; Heister et al., 2017) we use a plugin system for different parts of
the code. Such plugins enable users to add functionalities such as plate
tectonic features or coordinate systems without knowledge of the rest of
the code.

6. Version numbering: using Semantic Versioning 2.0.0 (https://semver.
org). The input file should specify the major version number that must
match the version number of the used GWB. Before the release of ma-
jor version 1, backwards incompatible changes may be made in minor
versions, because they will be beta releases. This implies that the input
files for major version 0 also must contain the minor version number. All
these features help ensuring reproducibility of results.

3.4 Using the World Builder
To exemplify input files and to show the capabilities of the Geodynamic

World Builder, we show here three 2D examples, and two 3D examples of the
GWB visualized through the standalone visualization application. This appli-
cation creates so-called vtu files which can be visualized by programs like Par-
aview (paraview.org). Furthermore, we show examples of GWB use with the
SEPRAN (van den Berg et al., 2015), ELEFANT (Plunder et al., 2018) and AS-
PECT codes. The annotated input files to create these models are presented in
appendixes 3.8 to 3.13 and are part of the GWB repository.

54

http://doxygen.nl/
https://geodynamicworldbuilder.github.io
https://geodynamicworldbuilder.github.io
https://semver.org
https://semver.org
paraview.org


3

3.4. Using the World Builder

3.4.1 Standalone examples
The GWB has an option to create a Paraview file of the GWB input file. This

can be useful for model creation or visualization support of presenting geody-
namic hypotheses, or for checking the user-designed model prior to using it in
a next step, e.g., for creating an initial model for geodynamic modelling.

2D subduction
Here we show two subduction models, one in Cartesian coordinates (Fig.

3.1) and the same model in spherical (effectively cylindrical) coordinates (Fig.
3.2), which were created through the input files in appendix 3.8. These input
files only differ in the selected coordinate system and whether the supplied co-
ordinates are in meters or in degrees. The model has a 95 km thick oceanic plate
of which the top 10 km defines the crust and which turns into a 500 km long
subducting slab in the center of the domain. The temperature in the oceanic
plate follows the plate model (Fowler, 2005) with a bottom temperature of 1600
K. The slab temperature is computed using the McKenzie model for a partic-
ular slab history. The model also contains a 100 km thick continental plate of
which the top 30 km is crust. Furthermore, the upper and lower mantle are
given different compositions and follow a linear temperature profile in the up-
per mantle from 1600 K at 95 km depth to 1820 K at 660 km depth, and in the
lower mantle from 1820 at 660 km depth to 2000 at 1160 km depth.

This example is created by placing the features in a particular order in the
input file. The features overlay, and in this case overwrite, an adiabatic back-
ground temperature and all compositions set to zero. This example consists of
five features: an oceanic plate, a continental plate, an upper mantle, a lower
mantle and a subducting plate. The first four do not overlap in their input def-
inition, so the order of definition in the Geodynamic World Builder input file
does not make a difference in the result. The subducting plate overwrites parts
of the oceanic plate, continental plate and the upper mantle, which is effectu-
ated by defining the slab after these three features. For each feature tempera-
ture and composition models are selected.

3D ocean spreading
We show in figure 3.3 a 3D rifting model with two rift systems next to each

other. The temperature is defined by the plate model. The mantle is given an
adiabatic geotherm defined by θS exp(αg d/Cp ), where θS is the potential sur-
face temperature of the mantle, α is the thermal expansion coefficient, g is the
gravitational acceleration, Cp is the specific heat and d is the depth. The input
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Figure 3.1: The top figure shows the distribution of different compositions through the model
domain. The oceanic crust composition is light blue, the oceanic lithosphere is dark blue, the
continental crust is light green, the continental lithosphere is dark green, the upper mantle is
light red and the lower mantle dark red. The bottom figure shows the temperature distribution
in the model (in Kelvin).

file of this example consists of the definition of the mantle domain followed by
two oceanic plates, which form the two ridge-plate systems. The two oceanic
plates are exactly the same, except for the shifted ridge location. The input file
for this example can be found in Appendix 3.9.

3D subduction
Figure 3.4 shows a 3D example defining a subduction geometry similar to

the one in Plunder et al. (2018). In this example the trench consists of three
connected straight lines. To create a smooth transition between these sections,
the user can choose to use a monotone spline interpolation between the co-
ordinates given by the user. This example includes a linear temperature upper
and lower mantle as described in the 2D subduction example. The 95 km thick
oceanic plate and the 120 km thick continental plate features are both defined
before the subducting plate feature, of which the trench is defined along the
interface between the two. The slab itself is 95 km thick and consists of four
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Figure 3.2: The same as setup as in figure 3.1, but now in spherical geometry. The top figure
shows the composition, the bottom figure shows the temperature.

Figure 3.3: The temperature field of the 3D two rift systems example. Material with a temperature
below 950 K has been omitted, in order to better show the rifts. Note the second rift system in
the background.
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Figure 3.4: The temperature field of the 3D subduction example. Note the smooth transition
between the upper and lower part of the subduction system in the top figure and the curved
geometry of the slab in the lower figure. For visualization purposes we have omitted the top 25
km of the model in the top figure.

segments. One 200 km long segment which goes from a dip angle of 0◦ to 45◦,
and one 400 km long segment which has an angle of 45◦, one 200 km long seg-
ment which goes from 45◦ to 0◦ and one 100 km long segment, with constant
dip angle of 0◦. The input file for this example can be found in Appendix 3.10.

3.4.2 Using the GWB with SEPRAN
SEPRAN is a general purpose finite element toolkit applied in engineering

problems as well as in development of 2D and 3D numerical models in geody-
namics and planetary science (Chertova et al., 2012, 2014a; Čížková et al., 2012;
van den Berg et al., 2015, 2019; Zhao et al., 2019). The model contains a litho-
spheric slab subducting under an overriding plate as shown in Fig. 3.5. One
sided subduction is obtained in a self consistent way by the presence of a weak
crustal layer of uniform viscosity 1021 Pa·s as part of the top of the subducting
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lithosphere. The mantle underlying the crust has a temperature and pressure
dependent viscosity with an Arrhenius type parameterization representative of
diffusion creep in olivine under upper mantle pressure and temperature con-
ditions. Viscosity is modeled as a material property for the crustal layer mate-
rial and the mantle material. Material transport is implemented using particle
tracers that are advected by the convective flow. The medium is described as a
mechanical mixture of materials with contrasting properties.

A 2D rectangular domain of 1000 km depth and 2000 km width is used. The
initial thermal and composition state is created using the Fortran wrapper of
the GWB library. The GWB tool is called in a loop over all nodal points of the
FEM mesh to define the initial temperature field for the subsequent convection
calculations. In a similar way the material distribution of the initial state is de-
fined by calling the composition function of the GWB library in a program loop
over particle tracers. The input file for this example can be found in Appendix
3.11.

3.4.3 Using the GWB with ELEFANT
ELEFANT is a 2D/3D Finite Element code for geodynamic problems (Maf-

fione et al., 2015; Lavecchia et al., 2017; Thieulot, 2017; Plunder et al., 2018)
written in Fortran. It principally relies on bi/tri-linear velocity-constant pres-
sure elements and uses the Marker-in-Cell technique to track materials. In or-
der to demonstrate the GWB flexibility of use a 3D double subduction setup
was created with the Fortran wrapper of the GWB (see Fig. 3.6): a composition
between 1 and 6 was then easily assigned to all markers (two different oceanic
crusts and oceanic lithospheres, one upper mantle and one lower mantle) and
a temperature based on the McKenzie model (McKenzie, 1970) was prescribed
onto the FE mesh, as shown in Fig. 3.7.

The domain is a Cartesian box with dimensions 2000×2000×800 km and the
Finite Element mesh counts 120×120×50 = 720,000 elements. Each element
contains 64 randomly distributed markers. Free slip boundary conditions are
imposed at the bottom (z = 0), top (z = Lz ) and sides (y = 0 and y = Ly ) of
the domain. The other two sides, x = 0 and x = Lx , are a mix of free slip (for
z < 100km or z > 690km) and open boundary conditions (for 100 < z < 690 km)
(Chertova et al., 2012). The input file for this example can be found in Appendix
3.12.

3.4.4 Using the GWB with ASPECT
ASPECT is an open source community FEM designed for geodynamic prob-

lems (Heister et al., 2017; Kronbichler et al., 2012). The model which was run
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Figure 3.5: SEPRAN model. Dimensionless viscosity field in log scale superimposed with 10
(dimensionless) temperature (between 0 and 0.82) isocontours.
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1 do im=1 ,nmarker
2 depth=Lz−zm(im)
3 do imat =1 ,nmat
4 c a l l composition_3d ( cworld ,xm(im) ,&
5 ym(im) ,zm(im) ,&
6 depth , imat−1, f l a g )
7 i f ( f l a g ==imat ) then
8 mat(im) =imat
9 e x i t

10 end i f
11 end do
12 end do
13

14 do ip =1 ,np
15 depth=Lz−z ( ip )
16 c a l l temperature_3d ( cworld , x ( ip ) , y ( ip ) ,&
17 z ( ip ) , depth , gz , T( ip ) )
18 end do

Figure 3.6: Example ELEFANT query routine using the GWB supplied Fortran wrappers compo-
sition_3d() and temperature_3d(): a) a loop runs over all markers and determines for each the
composition at its location; b) a loop runs over all grid points and the GWB returns its tempera-
ture as a function of their spatial coordinates.

with ASPECT is a 3D Cartesian model of a curved subduction system similar
to the plate-tectonic setting of the Lesser Antilles subduction of the eastern
Caribbean region. The lithosphere consists of a strong zero velocity Caribbean
upper plate, surrounded by an oceanic North American plate to the north and
northeast and the oceanic-continental South American plate to the south and
southeast. In the model the North American and South American plates move
west at a average rate over the past 5 Ma of 1.4 cm/yr relative to the Caribbean
plate (Boschman et al., 2014). The Lesser Antilles trench curves around the east
and north of the Caribbean plate. To the south, the Caribbean plate is partially
decoupled from the South American plate by a 50 km wide weak zone. To the
northwest a 250 km wide weak zone, from the western end of the trench to the
western edge of the model, partially decouples the North American plate from
the Caribbean plate. Below the lithosphere the sidewalls are open (Chertova
et al., 2012, 2014a) allowing for horizontal in/out flow of mantle material. From
660 km down a denser and more viscous material has been prescribed to delay
sinking of the slab into the lower mantle. The top boundary is a free surface
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Figure 3.7: ELEFANT model. Top: Markers for 5 compositions (the mantle markers have been
left out for ease of visualization) with the resulting velocity field; Bottom: Temperature field.

62



3

3.4. Using the World Builder

Figure 3.8: The 3D ASPECT Caribbean example after 2.5 million years of evolution. The top
image is a top view of the model, where the top 50 km is removed, and where the viscosity field is
shown with the velocity field indicated by the arrows. The bottom two figures are cut outs of the
temperature field between 600 K and 1535 K, showing in colour the temperature (T) and with
arrows the velocity fields, highlighting the velocity field in the slab and lithosphere.

(Rose et al., 2017) and the bottom boundary has a prescribed zero velocity. The
result of about 2.5 million years of evolution is shown in figure 3.8.

The details of the setup are presented in Appendix 3.13.
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3.4.5 Performance
The Finite Element mesh used in the example of section 3.4.4 is built in sev-

eral steps by ASPECT: the code starts with a regular grid and allows adaptive
mesh refinement to take place one level at the time. Each step of this process
calls the GWB library. The first step generates a grid counting 28,000 elements
and reports a total setup time for the initial conditions of 3.6 seconds on 480
MPI processes. The second step mesh counts 99,000 elements while the setup
of the initial conditions took (cumulatively) 10 seconds. The third step sees the
number of element jump to about 560,000 elements while its total (cumula-
tive) time to setup the initial conditions remains low at about 36 seconds. This
figure represents about 0.7% of the total wall time of the first time step, and a
negligible portion of the total wall time of the 20Myr-long simulation.

3.5 Discussion
We presented the Geodynamic World Builder Version 0.2.0 as a tool for con-

structing 2D and 3D initial models of geodynamic settings involving crust/litho-
sphere, plate boundaries, and subduction. The interface of the GWB with a
numerical modelling code is based on a query of the modelling code to sup-
ply temperature, density, or other information at a particular position. This
paper discusses version 0.2.0 of the Geodynamic World Builder, which is con-
sidered to be a beta version of the code. Input format and/or functionality may
change between minor versions and this will be documented on the website.
From version 1.0.0, we will use Semantic Versioning 2.0.0 (https://semver.
org/spec/v2.0.0.html), and backwards incompatible changes will only be
made in every major version of the code. Future improvements may for ex-
ample include extra temperature or composition modules, e.g. derived from
tomographic models, new or improved features or even new output interfaces,
e.g. velocity boundary conditions or initial topography. As an extension to area
and line features, adding point features are another possible improvement to
the Geodynamic World Builder. These can represent, for example, a spherical
weak seed or a plume. Because of a simple query interface it is in principle pos-
sible to use the GWB in connection with existing numerical modelling codes
used by the geodynamic community. The use of the GWB can also just be re-
stricted to creating 2D or 3D geodynamic models/cartoons for, e.g., teaching
purposes or for illustrating a complex geodynamic setting.

3.6 Code availability
The code is freely available at https://geodynamicworldbuilder.github.

io under licence LGPLv2.1. All examples presented in this work are available as
cookbooks in the code.

64

https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html
https://geodynamicworldbuilder.github.io
https://geodynamicworldbuilder.github.io


3

3.7. Acknowledgements

3.7 Acknowledgements
M.F. acknowledges constructive feedback from the ASPECT community,

and especially from T. Heister, W. Bangerth and R. Gassmöller. The authors
also acknowledge constructive proofreading by R. Myhill, H. Brett and L. van
de Wiel. MF and CT are indebted to the Computational Infrastructure for Geo-
dynamics (CIG) for their recurring participation to the ASPECT hackathons,
during which the foundation of this work was laid out. This work is funded
by the Netherlands Organization for Scientific Research (NWO), as part of the
Caribbean Research program, grant 858.14.070 and partly supported by the Re-
search Council of Norway through its Centres of Excellence funding scheme,
project number 223272. Data visualization is carried out with ParaView soft-
ware https://paraview.org/.

3.8 2D subduction examples
3.8.1 Cartesian input file

1 {
2 "version":"0.2",
3 "cross section":[[0 ,0] ,[100 ,0]] ,
4 "features":
5 [
6 // defining the oceanic plate
7 {
8 "model":"oceanic plate", "name":"oceanic plate",
9 "coordinates":[[-1e3 ,-1e3] ,[1150e3 ,-1e3] ,[1150e3 ,1e3],[-1e3 ,1e3]],

10 "temperature models":
11 [
12 {"model":"plate model", "max depth":95e3, "bottom temperature":1600 ,
13 "spreading velocity":0.005 ,
14 "ridge coordinates":[[100e3 ,-1e3],[100e3 ,1e3]]}
15 ],
16 "composition models":
17 [
18 {"model":"uniform", "compositions":[0], "max depth":10e3},
19 {"model":"uniform", "compositions":[1], "min depth":10e3,
20 "max depth":95e3}
21 ]
22 },
23 // defining a continental plate
24 {
25 "model":"continental plate", "name":"continental plate",
26 "coordinates":[[1150e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3] ,[1150e3 ,1e3]],
27 "temperature models":
28 [
29 {"model":"linear", "max depth":95e3, "bottom temperature":1600}
30 ],
31 "composition models":
32 [
33 {"model":"uniform", "compositions":[2], "max depth":30e3},
34 {"model":"uniform", "compositions":[3], "min depth":30e3,
35 "max depth":65e3}
36 ]
37 },
38 // defining the upper mantle
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39 {
40 "model":"mantle layer", "name":"upper mantle",
41 "min depth":95e3, "max depth":660e3,
42 "coordinates":[[-1e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3],[-1e3 ,1e3]],
43 "temperature models":
44 [
45 {"model":"linear", "min depth":95e3, "max depth":660e3,
46 "top temperature":1600, "bottom temperature":1820}
47 ],
48 "composition models":[{"model":"uniform", "compositions":[4]}]
49 },
50 // defining the lower mantle
51 {
52 "model":"mantle layer", "name":"lower mantle",
53 "min depth":660e3, "max depth":1160e3 ,
54 "coordinates":[[-1e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3],[-1e3 ,1e3]],
55 "temperature models":
56 [
57 {"model":"linear", "min depth":660e3, "max depth":1160e3,
58 "top temperature":1820, "bottom temperature":2000}
59 ],
60 "composition models":[{"model":"uniform", "compositions":[5]}]
61 },
62 // defining the subducting plate dipping towards the continental plate
63 {
64 "model":"subducting plate", "name":"Subducting plate",
65 "coordinates":[[1150e3 ,-1e3] ,[1150e3 ,1e3]], "dip point":[2000e3 ,0],
66 "segments":[{"length":200e3 , "thickness":[95e3], "angle":[0 ,45]} ,
67 {"length":200e3 , "thickness":[95e3], "angle":[45]} ,
68 {"length":200e3 , "thickness":[95e3], "angle":[45,0]} ,
69 {"length":100e3 , "thickness":[95e3], "angle":[0]}] ,
70 "temperature models":
71
72 {"model":"plate model", "density":3300, "plate velocity":0.01 }
73 ],
74 "composition models":
75 [
76 {"model":"uniform", "compositions":[0], "max distance slab top":10e3},
77 {"model":"uniform", "compositions":[1], "min distance slab top":10e3 ,
78 "max distance slab top":95e3 }
79 ]
80 }
81 ]
82 }

Listing 3.1: 2D Cartesian subduction example. The lines of green text (preceded by the double
forward slashes) are comments and have no effect on the result.

3.8.2 Spherical input file

1 {
2 "version":"0.2",
3 "cross section":[[0 ,0] ,[10 ,0]] ,
4 "features":
5 [
6 // defining the oceanic plate
7 {
8 "model":"oceanic plate", "name":"oceanic plate",
9 "coordinates":[[-1,-1],[11.5,-1],[11.5,1],[-1,1]],

10 "temperature models":
11 [
12 {"model":"plate model", "max depth":95e3, "bottom temperature":1600 ,
13 "spreading velocity":0.005 ,
14 "ridge coordinates":[[1 , -1] ,[1 ,1]]}
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15 ],
16 "composition models":
17 [
18 {"model":"uniform", "compositions":[0], "max depth":10e3},
19 {"model":"uniform", "compositions":[1], "min depth":10e3,
20 "max depth":95e3}
21 ]
22 },
23 // defining a continental plate
24 {
25 "model":"continental plate", "name":"continental plate",
26 "coordinates":[[11.5 , -1] ,[21 , -1] ,[21 ,1] ,[11.5 ,1]] ,
27 "temperature models":
28 [
29 {"model":"linear", "max depth":95e3, "bottom temperature":1600}
30 ],
31 "composition models":
32 [
33 {"model":"uniform", "compositions":[2], "max depth":30e3},
34 {"model":"uniform", "compositions":[3], "min depth":30e3,
35 "max depth":65e3}
36 ]
37 },
38 // defining the upper mantle
39 {
40 "model":"mantle layer", "name":"upper mantle",
41 "min depth":95e3, "max depth":660e3,
42 "coordinates":[[-1,-1],[21,-1],[21,1],[-1,1]],
43 "temperature models":
44 [
45 {"model":"linear", "min depth":95e3, "max depth":660e3,
46 "top temperature":1600, "bottom temperature":1820}
47 ],
48 "composition models":[{"model":"uniform", "compositions":[4]}]
49 },
50 // defining the lower mantle
51 {
52 "model":"mantle layer", "name":"lower mantle",
53 "min depth":660e3, "max depth":1160e3 ,
54 "coordinates":[[-1,-1],[21,-1],[21,1],[-1,1]],
55 "temperature models":
56 [
57 {"model":"linear", "min depth":660e3, "max depth":1160e3,
58 "top temperature":1820, "bottom temperature":2000}
59 ],
60 "composition models":[{"model":"uniform", "compositions":[5]}]
61 },
62 // defining the subducting plate dipping towards the continental plate
63 {
64 "model":"subducting plate", "name":"Subducting plate",
65 "coordinates":[[[11.5 , -1] ,[11.5 ,1]] , "dip point":[20,0],
66 "segments":[{"length":200e3 , "thickness":[95e3], "angle":[0 ,45]} ,
67 {"length":200e3 , "thickness":[95e3], "angle":[45]} ,
68 {"length":200e3 , "thickness":[95e3], "angle":[45,0]} ,
69 {"length":100e3 , "thickness":[95e3], "angle":[0]}] ,
70 "temperature models":
71
72 {"model":"plate model", "density":3300, "plate velocity":0.01 }
73 ],
74 "composition models":
75 [
76 {"model":"uniform", "compositions":[0], "max distance slab top":10e3},
77 {"model":"uniform", "compositions":[1], "min distance slab top":10e3 ,
78 "max distance slab top":95e3 }
79 ]
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80 }
81 ]
82 }

Listing 3.2: 2D Spherical subduction example. The lines of green text (preceded by the double
forward slashes) are comments and have no effect on the result.

3.9 3D ocean spreading example input file
1 {
2 "version":"0.2",
3 "features":
4 [
5 // defining one of the oceanic plates with a ridge
6 {
7 "model":"oceanic plate", "name":"oceanic plate A",
8 "coordinates":[[-1e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1000e3],[-1e3 ,1000 e3]],
9 "temperature models":

10 [
11 {
12 "model":"plate model", "max depth":95e3, "spreading velocity":0.005 ,
13 "ridge coordinates":[[1200e3 ,-1e3] ,[1200e3 ,1000 e3]]
14 }
15 ],
16 "composition models":
17 [
18 {"model":"uniform", "compositions":[0], "max depth":10e3},
19 {"model":"uniform", "compositions":[1], "min depth":10e3,
20 "max depth":95e3}]
21 },
22 // defining the other oceanic plate with a ridge
23 {
24 "model":"oceanic plate", "name":"oceanic plate B",
25 "coordinates":[[-1e3 ,1000e3] ,[2001e3 ,1000e3] ,[2001e3 ,2001e3],[-1e3 ,2001 e3

]],
26 "temperature models":
27 [
28 {
29 "model":"plate model", "max depth":95e3, "spreading velocity":0.005 ,
30 "ridge coordinates":[[800e3 ,1000e3] ,[800e3 ,2000 e3]]
31 }
32 ],
33 "composition models":
34 [
35 {"model":"uniform", "compositions":[0], "max depth":10e3},
36 {"model":"uniform", "compositions":[1], "min depth":10e3,
37 "max depth":95e3}]}
38
39 ]
40 }

Listing 3.3: 3d ocean spreading example input file. The lines of green text (preceded by the
double forward slashes) are comments and have no effect on the result.

3.10 3D subduction example input file
1 {
2 "version":"0.2",
3 "coordinate system":{"model":"spherical", "depth method":"begin segment"},
4 "cross section":[[0 ,0] ,[10 ,0]] ,
5 "maximum distance between coordinates":0.01 ,
6 "interpolation":"monotone spline",
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3.10. 3D subduction example input file

7 "features":
8 [
9 // defining the upper mantle

10 {
11 "model":"mantle layer", "name":"upper mantle",
12 "min depth":95e3, "max depth":660e3,
13 "coordinates":[[-1,-1],[41,-1],[41,-1],[-1,-1]],
14 "temperature models":
15 [
16 {
17 "model":"linear", "min depth":95e3 , "max depth":660e3 ,
18 "top temperature":1600, "bottom temperature":1820
19 }
20 ],
21 "composition models":[{"model":"uniform", "compositions":[4]}]
22 },
23 // defining the lower mantle layer
24 {
25 "model":"mantle layer", "name":"lower mantle",
26 "min depth":660e3, "max depth":1160e3 ,
27 "coordinates":[[-1,-1],[41,-1],[41,-1],[-1,-1]],
28 "temperature models":
29 [
30 {
31 "model":"linear", "min depth":660e3, "max depth":1160e3,
32 "top temperature":1820, "bottom temperature":2000
33 }
34 ],
35 "composition models":[{"model":"uniform", "compositions":[5]}]
36 },
37 // defining the oceanic plate
38 {
39 "model":"oceanic plate", "name":"oceanic plate",
40 "coordinates":[[-1,-1],[-1,41],[15,41],[15,20],[5,10],[5,-1]],
41 "temperature models":
42 [{"model":"linear", "max depth":95e3 , "bottom temperature":1600}] ,
43 "composition models":
44 [
45 {"model":"uniform", "compositions":[0], "max depth":10e3},
46 {"model":"uniform", "compositions":[1], "min depth":10e3,
47 "max depth":95e3}
48 ]
49 },
50 // defining the continental plate
51 {
52 "model":"continental plate", "name":"continental plate",
53 "coordinates":[[41 ,41] ,[15 ,41] ,[15 ,20] ,[5 ,10] ,[5 , -1] ,[41 , -1]] ,
54 "temperature models":[{"model":"linear", "max depth":120e3,
55 "bottom temperature":1600}] ,
56 "composition models":
57 [
58 {"model":"uniform","compositions":[2], "max depth":30e3},
59 {"model":"uniform","compositions":[3], "min depth":30e3,
60 "max depth":120e3}
61 ]
62 },
63 // defining the subducting plate
64 {
65 "model":"subducting plate", "name":"Subducting plate",
66 "coordinates":[[15 ,41] ,[15 ,25] ,[5 ,5] ,[5 , -1]] , "dip point":[20,0],
67 "segments":[{"length":200e3 , "thickness":[95e3], "angle":[0 ,45]} ,
68 {"length":400e3 , "thickness":[95e3], "angle":[45]} ,
69 {"length":200e3 , "thickness":[95e3], "angle":[45,0]} ,
70 {"length":100e3 , "thickness":[95e3], "angle":[0]}] ,
71 "temperature models":
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72 [{"model":"plate model", "density":3300 , "plate velocity":0.05 }],
73 "composition models":
74 [
75 {"model":"uniform", "compositions":[0], "max distance slab top":10e3},
76 {"model":"uniform", "compositions":[1], "min distance slab top":10e3}
77 ]
78 }
79 ]
80 }

Listing 3.4: 3d subduction spreading example input file. The lines of green text (preceded by the
double forward slashes) are comments and have no effect on the result.

3.11 SEPRAN 2D subduction
1 {
2 "version":"0.2",
3 "cross section":[[0 ,0] ,[100 ,0]] ,
4 "features":
5 [
6 // defining an oceanic plate on the left side of the model
7 {
8 "model":"oceanic plate", "name":"oceanic plate", "max depth":95e3,
9 "coordinates":[[-1e3 ,-1e3] ,[1000e3 ,-1e3] ,[1000e3 ,1e3],[-1e3 ,1e3]],

10 "temperature models":
11 [
12 {
13 "model":"plate model", "max depth":95e3, "bottom temperature":1600 ,
14 "spreading velocity":0.01,
15 "ridge coordinates":[[100e3 ,-1e3],[0e3 ,1e3]]
16 }
17 ],
18 "composition models":
19 [
20 {"model":"uniform", "compositions":[0], "max depth":10e3}
21 ]
22 },
23 // defining a weakzone oceanic plate at the first 100 km
24 {
25 "model":"oceanic plate", "name":"weak zone left", "max depth":95e3,
26 "coordinates":[[-1e3 ,-1e3],[100e3 ,-1e3] ,[100e3 ,1e3],[-1e3 ,1e3]],
27 "temperature models":
28 [
29 {
30 "model":"linear", "max depth":95e3 , "bottom temperature":1600,
31 "top temperature":1573
32 }
33 ]
34 },
35 // defining a continental plate at the right side of the model
36 {
37 "model":"continental plate", "name":"continental plate", "max depth":95e3

,
38 "coordinates":[[1000e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3] ,[1000e3 ,1e3]],
39 "temperature models":
40 [
41 {"model":"linear", "max depth":95e3, "bottom temperature":1600}
42 ]
43 },
44 // defining an oceanic plate as weakzone at the rightmost side of the model
45 {
46 "model":"oceanic plate", "name":"weak zone right", "max depth":95e3 ,
47 "coordinates":[[1900e3 ,-1e3] ,[2000e3 ,-1e3] ,[2000e3 ,1e3] ,[1900e3 ,1e3]],
48 "temperature models":
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49 [
50 {
51 "model":"linear", "max depth":95e3 , "bottom temperature":1600,
52 "top temperature":1573
53 }
54 ]
55 },
56 // defining the upper mantle
57 {
58 "model":"mantle layer", "name":"upper mantle",
59 "min depth":95e3, "max depth":660e3,
60 "coordinates":[[-1e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3],[-1e3 ,1e3]],
61 "temperature models":
62 [
63 {"model":"linear", "max depth":660e3,
64 "top temperature":1600, "bottom temperature":1820}
65 ]
66 },
67 // defining the lower mantle
68 {
69 "model":"mantle layer", "name":"lower mantle",
70 "min depth":660e3, "max depth":1160e3 ,
71 "coordinates":[[-1e3 ,-1e3] ,[2001e3 ,-1e3] ,[2001e3 ,1e3],[-1e3 ,1e3]],
72 "temperature models":
73 [
74 {"model":"linear", "max depth":1160e3,
75 "top temperature":1820, "bottom temperature":2000}
76 ]
77 },
78 // defining the subducting plate
79 {
80 "model":"subducting plate", "name":"Subducting plate",
81 "coordinates":[[1000e3 ,-1e3] ,[1000e3 ,1e3]], "dip point":[2000e3 ,0],
82 "segments":
83 [
84 {"length":200e3 , "thickness":[95e3], "angle":[0 ,45]} ,
85 {"length":200e3 , "thickness":[95e3], "angle":[45]}
86 ],
87 "temperature models":
88 [
89 {"model":"plate model", "density":3300, "plate velocity":0.01 }
90 ],
91 "composition models":
92 [
93 {"model":"uniform", "compositions":[0], "max distance slab top":10e3}
94 ]
95 },
96 // defining a continental plate on top of the slab to force 293.15 K at
97 // the surface near the slab
98 {
99 "model":"continental plate", "name":"top on slab", "max depth":1,

100 "coordinates":[[900e3 ,-1e3] ,[1100e3 ,-1e3] ,[1100e3 ,1e3],[900e3 ,1e3]],
101 "temperature models":[{"model":"uniform", "temperature":293.15}]
102 }
103 ]
104 }

Listing 3.5: 2d SEPRAN subduction example input file. The lines of green text (preceded by the
double forward slashes) are comments and have no effect on the result.
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3.12 ELEFANT 3D Double subduction setup

Figure 3.9: Connection between the GWB input file (right panel) and the resulting marker fields (left panel). Small upper inserts in the right
panel show each plate layering while the bottom insert shows the temperature field zoomed in on slab B.
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3.13. ASPECT 3d curved subduction

3.13 ASPECT 3d curved subduction
1 {
2 "version":"0.2",
3 "potential mantle temperature":1500,
4 "thermal expansion coefficient":2.0e-5,
5 "maximum distance between coordinates":100000 ,
6 "interpolation":"monotone spline",
7 "surface temperature":293.15 ,
8 "force surface temperature":true ,
9 "coordinate system":{"model":"cartesian"},

10 "features":
11 [
12 // defining an oceanic plate for the North and South American plate
13 {"model":"oceanic plate", "name":"NS American plate",
14 "coordinates":[[1700e3 ,0] ,[1700e3 ,300e3] ,[1606e3 ,650e3],
15 [1350e3 ,906e3] ,[1000e3 ,1000e3],[-1e3 ,1000 e3],
16 [-1e3 ,1501 e3] ,[2501e3 ,1501 e3] ,[2501e3 ,-501e3],
17 [-1e3 ,-501e3],[-1e3 ,-50e3] ,[2000e3 ,-50e3],
18 [2000e3 ,0e3]],
19 "temperature models":[{"model":"linear", "max depth":100e3}],
20 "composition models":[{"model":"uniform", "compositions":[0],
21 "max depth":30e3}]},
22
23 // Defining an oceanic plate for the Caribbean plate
24 {"model":"oceanic plate", "name":"Caribbean plate",
25 "coordinates":[[1700e3 ,300e3] ,[1689e3 ,422e3] ,[1658e3 ,539e3],
26 [1606e3 ,650e3] ,[1536e3 ,749e3] ,[1450e3 ,836e3],
27 [1350e3 ,906e3] ,[1239e3 ,958e3] ,[1122e3 ,989e3],
28 [1000e3 ,1000e3],[650e3 ,1000e3],[-1e3 ,1000 e3],
29 [-1e3 ,0e3] ,[1700e3 ,0e3]],
30 "temperature models":[{"model":"linear", "max depth":100e3}],
31 "composition models":[{"model":"uniform", "compositions":[1],
32 "max depth":30e3}]},
33
34 // Defining a continental plate for the weak zone
35 {"model":"continental plate", "name":"Carribean weak zone",
36 "coordinates":[[-1e3 ,1000e3],[-1e3 ,750e3] ,[1536e3 ,749e3],
37 [1450e3 ,836e3] ,[1350e3 ,906e3] ,[1239e3 ,958e3],
38 [1122e3 ,989e3] ,[1000e3 ,1000e3] ,[650e3 ,1000 e3]],
39 "temperature models":[{"model":"linear", "max depth":100e3}],
40 "composition models":[{"model":"uniform", "compositions":[2],
41 "max depth":30e3},
42 {"model":"uniform", "compositions":[3],
43 "min depth":30e3}]},
44
45 // Defining a mantle layer for the lower mantle
46 {"model":"mantle layer", "name":"660", "min depth":660e3 ,
47 "coordinates":[[-1e3 ,-500e3],[-501e3 ,2500e3] ,[2501e3 ,2500e3],
48 [2501e3 ,-501e3]],
49 "composition models":[{"model":"uniform", "compositions":[4]}]} ,
50
51 // Defining a subducting plate for the Lesser Antilles slab
52 {"model":"subducting plate", "name":"Lesser Antilles slab",
53 "coordinates":[[1700e3 ,0] ,[1700e3 ,300e3] ,[1606e3 ,650e3],
54 [1350e3 ,906e3] ,[1000e3 ,1000e3] ,[650e3 ,1000 e3]],
55 "dip point":[-1,-1],
56 "min depth":0, "max depth":660e3,
57 "segments":
58 [
59 {"length":300e3 , "thickness":[100e3], "angle":[0 ,50]},
60 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
61 {"length":275e3 , "thickness":[100e3], "angle":[50,0]},
62 {"length":0e3, "thickness":[100 e3], "angle":[0]}
63 ],
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64 "sections":
65 [
66 {"coorindate":"0",
67 "segments":
68 [
69 {"length":300e3 , "thickness":[100e3], "angle":[0,25]},
70 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
71 {"length":300e3 , "thickness":[100e3], "angle":[50 ,0]},
72 {"length":50, "thickness":[100e3], "angle":[0]}
73 ]
74 },
75 {"coorindate":"5",
76 "segments":
77 [
78 {"length":300e3 , "thickness":[100e3], "angle":[0,25]},
79 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
80 {"length":50e3 , "thickness":[100e3], "angle":[50,0]} ,
81 {"length":0, "thickness":[100e3], "angle":[0]}
82 ]
83 }
84 ],
85 "temperature models":
86 [
87 {"model":"plate model", "density":3300, "plate velocity":0.0144 ,
88 "thermal conductivity":2.5, "thermal expansion coefficient":2e-5 }
89 ],
90 "composition models":
91 [
92 {"model":"uniform","compositions":[0], "min distance slab top":30e3}
93 ]
94 },
95
96 // Defining a continental plate for the weakzone between the Caribbean and
97 // South America
98 {"model":"continental plate","name":"South Weakzone",
99 "coordinates":[[-1e3 ,0e3],[-1e3 ,-50e3] ,[2000e3 ,-50e3] ,[2000e3 ,0e3]],

100 "temperature models":[{"model":"linear", "max depth":100e3}],
101 "composition models":
102 [
103 {"model":"uniform","compositions":[2], "max depth":30e3},
104 {"model":"uniform", "compositions":[3], "min depth":30e3}]}
105
106 ]
107 }

Listing 3.6: Input for the ASPECT example. The lines of green text (preceded by the double
forward slashes) are comments and have no effect on the result.
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Chapter 4. Assessing the geodynamics of strongly arcuate subduction zones:
the eastern Caribbean subduction setting.

4.1 Summary
In this chapter I build on the accomplishments of Chapters 2 and 3 to create

a next step in numerical simulating the geodynamic evolution of natural sub-
duction. The target natural system is that of strongly arcuate subduction which
is common on Earth. The eastern Caribbean Lesser-Antilles subduction system
is taken as the example system for 3D numerical simulation. I demonstrate for
this arcuate subduction system the geodynamical feasibility of westward di-
rected trench-parallel slab transport through the mantle, i.e. slab dragging by
North-American plate motion, of the northern slab segment while the eastern
slab is subducting at a mantle-stationary trench. The resistance of the ambient
mantle against slab dragging as well as the lateral deformation of the arcuate
slab create a complex 3-D stress field in the slab that deviates strongly from
the classical view of slab-dip aligned orientation of slab stress. Slab dragging
thus may reveal itself in the focal mechanisms of intermediate and deep earth-
quakes. These characteristics of arcuate subduction are generic and may as
well apply to other arcuate subduction systems, such as Izu-Bonin-Marianas
or the Aleutians-Alaska systems, where anomalous focal mechanisms of slab
events are observed. This chapter demonstrates the developed capabilities and
computational feasibility towards assessing the 3D-complexity and geodynam-
ics of natural subduction systems.

4.2 Introduction
Numerical three-dimensional (3D) thermo-mechanical modelling provides

a crucial means for investigating the geodynamic evolution of plate conver-
gence involving lithosphere subduction. Particularly, subduction modelling fa-
cilitates a way for creating quantitative links between crust-mantle processes
and the various surface observations of plate convergence zones obtained from
geological, seismological, or geodetic methods. Clearly, this requires the ca-
pability of numerical simulation of natural subduction systems that are char-
acterized by complex tectonic histories and 3D slab evolution. Advances in
global mantle convection modelling have shown that plate motions and litho-
sphere subduction can be sustained in a dynamically self-consistent way (e.g.

Assessing the geodynamics of strongly arcuate subduction zones: the eastern Caribbean sub-
duction setting., M. Fraters, W. Spakman, C. Thieulot and D. van Hinsbergen, in preparation for
publication.
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Crameri and Tackley, 2015; Coltice and Shephard, 2017), but creating useful
tectonic predictions for natural subduction is still difficult (Coltice and Shep-
hard, 2017). When subduction modelling is restricted to a regional modelling
domain, it is easier to control governing plate motions through boundary con-
ditions and impose initial model conditions derived from (paleo-)tectonic set-
tings. Most investigations based on a regional model domain define an initial
3D model in which plate boundaries are either parallel or perpendicular to the
rectangular boundaries (e.g. Stegman et al., 2006; Yamato et al., 2009; Burkett
and Billen, 2010; Stegman et al., 2010a; van Hunen and Allen, 2011; Capitanio
et al., 2011; Moresi et al., 2014; Schellart and Moresi, 2013; Duretz et al., 2014;
Sternai et al., 2014; Magni et al., 2014; Pusok and Kaus, 2015; Capitanio et al.,
2015; Kiraly et al., 2016; Sternai et al., 2016; Schellart, 2017; Pusok et al., 2018;
Chertova et al., 2018; Gülcher et al., 2019). In this setup, subduction develops
from an initially straight trench with trench-perpendicular plate convergence
and is controlled by the trench-perpendicular forcing of slab pull and conver-
gent plate motions. Much less studies have attempted to simulate natural sub-
duction by implementing constraints from the first-order inferences of, e.g.,
governing trench-oblique plate motions, lithosphere structure and trench ge-
ometry, or from plate-tectonic reconstructions (e.g. Billen and Gurnis, 2003; Liu
and Stegman, 2011; Jadamec and Billen, 2010; Jadamec et al., 2013; Malatesta
et al., 2013; Chertova et al., 2014b, 2018; Hu and Liu, 2016). This class of subduc-
tion modelling, however, entails resolving the practical difficulty of construct-
ing geometrically complex 3D initial models for the paleogeographic setting of
incipient subduction or for an advanced stage of subduction evolution.

The research we report here is in the realm of the latter modelling approach
and assesses the geodynamics of natural subduction zones that are charac-
terized by strongly trench-oblique plate convergence. We focus our investi-
gation on the geodynamical processes involved in strongly arcuate subduc-
tion. Prominent examples of such subduction systems are the major Aleutian-
Alaska, Izu-Bonin-Marianas, or Andaman-Sumatra subduction zones. These
are characterized by large absolute plate motions of the subducting plate at
the trench, ranging between 70-110 mm/yr, and by directions of plate con-
vergence that vary from near trench-perpendicular (at the Alaska, Marianas,
and east-Sumatra trenches, respectively) to strongly trench-oblique with de-
partures from trench-perpendicular convergence by 60° to even 90° (e.g. Fig.
S4 of Doubrovine et al. (2012)). Much smaller arcuate subduction systems with
significant trench-parallel components of subducting plate motion occur in the
Mediterranean region. These systems involve low absolute plate motion of the
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subducting African plate to the NNE that varies between ~8 mm/yr for the east-
dipping Gibraltar subduction in the western Mediterranean, to ~10 mm/yr for
the northwest-dipping Calabria subduction of the Central Mediterranean, to
~12 mm/yr for NNE-dipping Aegean subduction of the Eastern Mediterranean.

The Lesser Antilles subduction of the eastern Caribbean region (Fig. 4.1A) is
a strongly arcuate subduction system that is similar in geometry with the three
major systems while it involves relatively small absolute motion of the subduct-
ing North and South American plates of at present ~20 mm/yr in westward di-
rection. The plate-tectonic setting, geometry, and evolution of the Lesser An-
tilles subduction system are used here as a guide for our assessment of the
geodynamics of arcuate subduction that involves low subducting-plate mo-
tion. Because it is unknown how arcuate subduction initializes, we focus our
research here on taking a more advanced evolution stage of established arcu-
ate subduction as the starting point for modeling for which we create an ini-
tial 3D model using our recently developed ’Geodynamic World Builder’ (GWB;
version 0.1.0) (Fraters et al. 2019b, submitted to Solid Earth; Chapter 3). The
GWB is a versatile open-source software tool for the relatively easy construction
of geometrically intricate initial temperature-composition models for geody-
namic modelling. It allows construction of complex 3D subduction geometries
as a starting point for generic modelling, for testing plate-tectonic evolution
scenarios, for investigating the evolution of natural subduction, or for the in-
stantaneous dynamics of present-day subduction.

We employ the GWB to construct an approximation of the 3D geometry of
the 3D Lesser Antilles subduction zone at ~10 Ma including overriding and sub-
ducting plates. Our aim is two-fold. First, we experiment with various rheol-
ogy and temperature settings of the initial model enabling local exploration of
the model space for the style of subduction evolution. Particularly, we aim to
obtain parameter settings for crust-mantle rheology such that a more or less
mantle-stationary eastern Lesser Antilles trench is obtained as is suggested by
plate reconstructions in several mantle reference frames (Müller et al., 1999;
Boschman et al., 2014). Second, we investigate the hypothesis that, while the
eastern Lesser Antilles slab is mantle-stationary, the northern limb of the Lesser
Antilles subduction is subject to strong near trench-parallel lateral transport of
the slab by the absolute motion of the North American plate, which is an ex-
ample of slab dragging (Spakman et al., 2018). Our main purpose is to investi-
gate how such an arcuate slab system develops from the interplay between 1)
slab dragging forced by the absolute motion of the North and South American
plates, 2) the almost not moving overriding Caribbean plate, 3) the vertically-

78



4

4.3. Three-dimensional initial model of arcuate subduction based on the
tectonic setting of the Lesser Antilles slab

Figure 4.1: Plate tectonic setting of the Eastern Caribbean region. A: Purple lines: plate
boundaries from MORVEL56 (Argus et al., 2011) delineating the Caribbean plate, the LA trench
(barbed), and the North and South American plate boundary; magenta vectors: present-day
plate motions in the mantle reference frame of Doubrovine et al. (2012); yellow vectors: trench-
parallel component of North and South American plate motion; blue vectors: GPS motions
(Kreemer et al., 2014) plotted in the same mantle reference frame. Background colors: ETOPO1
bathymetry (Amante and Eakins, 2009). B: Tomographic section through model UU-P07 (Hall
and Spakman, 2015; van der Meer et al., 2018) at a depth of 200 km. NLA and SLA denote
the southern and northern Lesser Antilles slab. Two slab gaps are indicated. Dashed lines:
tomography-based interpreted slab edges (van Benthem et al., 2014; Harris et al., 2018)

directed slab pull, and 4) the viscous coupling of the slab to the ambient man-
tle. Particularly, we explore the role of slab dragging in arcuate subduction in-
volving slowly moving subducting and overriding plates. Our work focuses in a
generic way on the acting processes and serves as a stepping stone towards
more elaborate numerical simulations of arcuate subduction, e.g., involving
lateral lithosphere heterogeneity and (inherited) lithosphere weakness, such
that future models can come closer to prediction of surface observations.

4.3 Three-dimensional initial model of arcuate
subduction based on the tectonic setting of the
Lesser Antilles slab

The Lesser Antilles (LA) subduction zone comprises a west-dipping slab un-
der the eastern Lesser Antilles island arc that curves laterally by about 90° into
a south dipping slab along the northern Hispaniola-Puerto Rico trench (Fig.
4.1A). Under the eastern LA arc both the North-American (NAM) and South-
American (SAM) lithosphere subducts. The plate boundary between SAM and
NAM is poorly defined. Fig. 4.1A shows the boundary from Argus et al. (2011)
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while interpretations of seismic tomography suggest it coincides with a gap in
the slab that is imaged to depths of 200-300 km separating the southern Lesser
Antilles slab (SLA) from the northern Lesser Antilles (NLA) slab (Fig. 4.1B; van
Benthem et al., 2013; Harris et al., 2018). Another slab gap between Hispaniola
and Puerto Rico (Fig. 4.1B) was proposed by Harris et al. (2018), while Meighan
et al. (2013) suggest vertical slab segmentation to the east of Puerto Rico. The
arcuate slab geometry is well delineated by slab seismicity to depths of ~200
km (Harris et al., 2018) and in the upper mantle by seismic tomography van
Benthem et al. (2013); Harris et al. (2018).

In a plate motion frame relative to the Caribbean plate, the NAM plate
converges at present highly oblique at an angle of ~20° with the strike of the
northern trench. This suggests a component of westward trench-parallel mo-
tion of the NLA slab with respect to the Caribbean plate (van Benthem et al.,
2014). Investigating actual slab motion through the mantle requires a man-
tle frame of reference (e.g. Doubrovine et al. (2012)) to define the absolute
plate motion (APM) of the NAM and SAM subducting plates and that of the
overriding Caribbean plate. Along the eastern trench, the APM of the NAM
and SAM plates is at present largely trench-perpendicular in the south and in-
creasingly trench-oblique when going to the north, while the NAM plate moves
near trench-parallel along the northern trench (Fig. 4.1A). The Caribbean plate
shows at present little motion in the mantle frame (Fig. 4.1A) while the small
GPS motions of the LA islands above the eastern LA slab imply that the east-
ern LA trench may also be about mantle-stationary. This plate-tectonic setting
in the mantle reference frame suggests that the NLA slab is at present being
transported almost trench-parallel through the upper mantle by the APM of
the NAM plate whereas the eastern LA slab is subducting at a mantle-stationary
trench.

The trench-parallel slab motion is an example of slab dragging, i.e., ’the pro-
cess of lateral slab transport through the mantle that is forced by the absolute
surface motion of the subducting plate’ (Spakman et al., 2018). Slab dragging
at a rate of 6-7 mm/yr has recently been documented for the Gibraltar slab of
the western Mediterranean (Spakman et al. 2018), and at a trench-parallel rate
of about 30 mm/yr for the Tonga-Kermadec slab (van de Lagemaat et al., 2018).
The actual occurrence and effects of slab dragging on slab deformation during
arcuate subduction are here important targets of investigation.

We employ the GWB to reconstruct the 3D subduction zone geometry for
setting up an initial geometrical model that simulates 3D slab morphology at
10 Ma and which implements overriding and subducting plates. By doing so
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we avoid defining the poorly constrained paleogeographic and plate tectonic
setting of subduction initiation in the Paleogene(e.g. Pindell and Kennan, 2009;
Boschman et al., 2014). Another advantage is that we can reduce the compu-
tation time for such complex subduction models. The Caribbean plate has
been more or less mantle-stationary since the Paleogene (Müller et al., 1999;
Boschman et al., 2014). Assuming that the eastern LA trench has also been
mantle-stationary, the simplest reconstruction for 10 Myr ago requires shifting
the NAM plate, and thus the northern slab edge, to the east. Given the large
uncertainty of absolute plate motions (Doubrovine et al., 2012), we assume
a mantle-stationary Caribbean plate and use the more accurate relative plate
motion between the Caribbean and NAM for NAM of ~15 mm/yr during the
past 10 Myr (Boschman et al., 2014). We adopt this value for the west-directed
APM of both NAM and SAM. This choice keeps our approximation of the Lesser
Antilles subduction close enough to the actual system while our generic mod-
elling can focus on assessing the dynamics of arcuate subduction at low APM of
the subducting plate and close to the African APM involved in arcuate Mediter-
ranean subduction systems.

Effectively, for the construction of the slab geometry at 10 Ma we estimate
the first-order geometrical characteristics (dip, length, curvature) of the tomo-
graphically imaged slab of Harris et al. (2018) and remove 150 km from the
western part of the slab. This leads to the slab geometry of Fig. 4.2. Impor-
tantly, the 150 km eastward shift of the slab at 10 Ma is just an assumption and
provides a starting geometry. Modelling forward in time, the slab evolution may
show if the resulting slab geometry at 0 Ma conforms to the tomographic ob-
servation. For instance, this would provide a primary test of the hypothesis that
the NLA slab is being entirely dragged westward by the APM of the NAM plate,
instead of only partially, or not significantly.

A Cartesian model box is adopted with X-Y-Z dimensions of 2500 km × 2000
km × 800 km. The initial model is built from six different GWB-features which
are assigned GWB-compositions for identification. The background tempera-
ture is defined by the adiabatic geotherm θS exp(αg d/Cp ), where θS is the po-
tential temperature of the mantle (1500 K), α is the thermal expansion coeffi-
cient (2×10−5 K−1), g is the gravitational acceleration (m/s2), Cp is the specific
heat (1250 J· kg−1 K−1) and d is the depth. When no composition label is de-
fined, the background composition is assumed, i.e. the mantle. This holds for
instance for the lithospheric mantle of the tectonic plates. The initial model
consists of the following parts:

• The North and South American plate, which are combined here into one
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Figure 4.2: Initial subduction model geometry and velocity boundary conditions. A: Regions
composing the crust. The thickness of the Caribbean, NAM and SAM crust is 30 km and its
rheology is tunable separately from the lithospheric mantle. Weakness zones of tunable rhe-
ology provide visco-plastic decoupling between the Caribbean and NAM and SAM plates. The
lithospheric mantle is configured as part of the mantle and shown in B. The NAM and SAM litho-
sphere obtain uniform west pointing plate velocity which is imposed on the vertical model edges
and across the lithosphere thickness of 100 km. The top of the model is a dynamic free surface.
B: Temperature view of the 3D lithosphere starting model. Temperature in the lithosphere in-
creases linearly. In the slab, a temperature field is shown computed from the analytical solution
provided by McKenzie (1970). Slabs with different initial temperature are used in experiments.
The three transparent zones plotted on the slab and labeled w(est),c(entral), and e(ast), denote
locations of a priori inserted vertical slab weakness zones used for experimenting.
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plate, North-South American (NSAM) plate, is given a thickness of 100
km and a linear temperature profile from the surface temperature (293
K) to the adiabatic temperature at the depth of 100 km. The crustal layer
is represented by compositional layer 0 and is 30 km in thickness.

• The Caribbean plate only differs from the North-South American plate by
its compositional label 1 for the crust.

• The LA trench together with the subducting slab is the next GWB-feature.
The trench is defined by 12 trench points, interpolated by a monotone
spline, that effectively describe 3 main lateral trench sectors: the east-
ern trench, the curved trench, and the more or less EW-striking northern
trench (Fig. 4.2A). In each trench point the slab is parameterized by 4
four depth segments along a vertical section. The first 3 segments obtain
the same dip variation while the 4th, deepest segment, varies in geomet-
rical properties along the trench from SE to NW. The thickness of all slab
segments is equal to the thickness of the subducting North-South Amer-
ican plate, i.e. 100 km. Laterally, the geometrical properties are linearly
interpolated between the 12 vertical trench-slices. The first slab segment
has a length of 150 km and starting-dip angle of 0°, i.e. parallel with the
surface, which increases linearly with depth to 25°. The second segment,
also of 150 km, starts with a dip angle of 25° which linearly increases along
the segment to 50°. The third segment has a length of 171 km and dips
uniformly at 50°. The last segment is of variable length but the dip angle
in each trench slice changes linearly from 50° to 0°. In the eastern main
slab sector, from the SE slab edge to the beginning of the slab bend, the
length of the fourth depth segment varies from 300 km to 275 km. In the
bend-sector, the length is 275 km and after the bend, i.e. the northern
slab sector, the length varies from 275 to 50 km. The temperature in the
plate is defined by the McKenzie (1970) temperature model and the top
30 km of the slab has compositional label 0. The southern sector has the
largest slab length of 875 km and reaches the depth of 660 km at the tran-
sition to the lower mantle. In 10 Myr of subduction evolution the length
would increase to ~1025 km which underestimates the ~1100 km of sub-
duction since ~45 Ma (Boschman et al., 2014). This is done to avoid too
strong coupling between slab and lower mantle in all numerical models.
Effects of possible deep upper-mantle anchoring of the slab (e.g. Uyeda
and Kanamori, 1979; Heuret and Lallemand, 2005) will be tested in ex-
periments with an increased viscosity in the deeper upper mantle.
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• To the west of the northern slab edge under Hispaniola, a 100 km
thick and 250 km wide lithosphere plate is defined with the same lin-
ear geotherm as in the adjacent plates. The zone is extended to the east
where it partly replaces the Caribbean plate (top green zone of Fig. 4.2A).
To west of the slab edge, this continental zone will serve as a weak zone
decoupling the North American and Caribbean plates whereas it defines
a weak upper plate above the NLA slab. The continental segment is given
a separate composition label 2 for the crust and composition label 3 for
the deeper lithosphere, which enables tuning the lithosphere rheology
separately from the adjacent plates.

• A similar lithospheric weak zone of thickness 100 km and width 50 km
decouples the South American plate from the Caribbean plate and the
slab. Composition labels are the same as for the northern weak zone.

• The lower mantle below 660 km is separately defined with composition
label 4.

To test the effects of lateral rheological slab heterogeneity, e.g. subducted
inherited weak zones, vertical segments of slab have been assigned a separate
compositional label 2 for the crustal part and label 3 for the lithospheric part
of the slab, such that the rheology can be assigned to be weaker then the sur-
rounding slab. Weak zones can be placed in three locations (Fig. 4.2B).

Depending on the compositional label, all model features can be assigned
specific material rheology. Rheology and slab temperature will be defined in
each numerical experiment leading to a complete definition of the initial con-
ditions.

The details of how the model is setup through the GWB can be found in
appendix 4.7.

4.4 Model setup
4.4.1 Numerical model setup

Modelling the dynamic evolution of subduction requires numerically solv-
ing the governing equations of continuum mechanics for which modern, open
source, parallel geodynamics codes are available, such as pTatin (May et al.,
2015), LaMem (Kaus et al., 2016), Citcom(S) Zhong et al. (2000), Underworld 2
(Mansour et al., 2019), or ASPECT (Kronbichler et al., 2012; Heister et al., 2017).
In this thesis we use version 2.1.0-pre of ASPECT with some unmerged but pro-
posed changed at the time of writing. The most significant changes are three
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added plugins. The first plugin is a boundary temperature model which pre-
scribes the initial temperature to all boundaries, except for the surface, where a
fixed temperature is set. Secondly a mesh refinement model which allows to set
minimum and maximum refinement levels between a pre-set minimum and
maximum temperature. Thirdly, a postprocessor which computes the maxi-
mum shear stress. This is computed by first computing the eigenvalues and
eigenvectors of the stress tensor. The direction of the maximum shear is then
computed by subtracting the smallest eigenvector from the largest eigenvector.
The magnitude is computed by subtracting smallest eigenvalue by the largest
eigenvalue and dividing it by two. The exact setup can be found in appendix
4.8, which shows the reference ASPECT input file.

Governing equations
The mass, momentum and energy conservation equations are those of a

fluid under the Boussinesq approximation (Schubert et al., 2001):

−∇· (2ηε(u)
)+∇p = ρg inΩ, (4.1)

∇·u = 0 inΩ, (4.2)

ρ0Cp

(
∂T

∂t
+u ·∇T

)
−∇·k∇T = ρH inΩ, (4.3)

∂ci

∂t
+u ·∇ci = qi inΩ, i = 1. . .C (4.4)

where u is the velocity, p the pressure and T the temperature. The set of ad-
vected quantities ci are called compositional fields and are used to track mate-
rials. The coefficient are as follows: η is the viscosity, ρ the density, g the gravity
vector and ε(·) denotes the (deviatoric) symmetric gradient operator defined
by ε(v) = 1

2 (∇v+∇vT), Cp is the specific heat, k the thermal conductivity and H
is the internal heat production. Note that all coefficients that appear in these
equations can depend on the pressure, temperature, chemical composition,
and the strain rate, thereby making these equations potentially nonlinear.

In our modelling we have used the default Finite Element type of ASPECT,
i.e. the Q2 ×Q1 element (Gresho and Sani, 2000). Details of the Finite Element
discretization of the above equations can be found in Chapter 2 as well as in
Kronbichler et al. (2012); Heister et al. (2017). All simulations were performed
with the stabilized Newton solver, as described in Chapter 2, and run in par-
allel on 480 threads on five nodes made from AMD EPYC 7451 24-Core Pro-
cessors. Depending on the chosen set of rheological parameters simulations
took between 3 and 6 days to simulate 10 million years. In the reference model,
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the number of elements varies through time between 560000 and 660000. The
number of Stokes degrees of freedom (dofs) vary between 15 and 18 million, the
number of temperature dofs between 4.7 and 5.7 million and the total number
of composition dofs between 23 and 28 million over a total simulation time of
20 million years.

4.4.2 Boundary conditions
The 6 geometrical boundaries of the regional model box comprise ten dif-

ferent boundary domains for defining boundary conditions: a top and bottom
boundary, four side boundaries above 100 km depth and four side boundaries
below 100 km depths. The top boundary is a (stabilized) free surface (Rose et al.,
2017; Kaus et al., 2010; Quinquis et al., 2011). On the bottom boundary a zero
velocity boundary condition (no-slip) is defined. The four bottom side bound-
aries are open boundaries (Chertova et al., 2012) which were implemented in
ASPECT by Anne Glerum (Glerum et al., 2018). The eastern and western top
side boundaries are assigned velocity boundary condition (Dirichlet type) of
1.5 cm/yr (or 3.0 cm/yr in some experiments), uniformly pointing to the west
in most of the domain. At the Caribbean plate the boundary velocity is set to
zero, and in the weak zones the velocity linearly increases from zero at the side
of the Caribbean plate to 1.5 (or 3.0 cm/yr) in the NSAM plate. To compensate
for the lower outflow in the southern weak zone, there is slightly less inflow
on the south-east of the model. The north and south boundaries have for the x
and y component an open boundary condition, where the z component is fixed
to zero velocity. Temperature boundary conditions are set along the sides and
bottom according to the initial model. For details on the boundary conditions,
see the ASPECT input file in section 4.8.

4.4.3 Rheological model
For the rheology we use a composite viscosity model consisting of three ef-

fective viscosities computed for each composition i as follows:

• the effective dislocation creep viscosity:

ηdsl
i = 1

2
A
− 1

ni ε̇i

1−ni
ni exp

(E∗
i +PV ∗

i

ni RT

)
• the effective diffusion creep viscosity:

ηdff
i = 1

2
A−1d

mi
ni exp

(E∗
i +PV ∗

i

RT

)
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• the effective plastic viscosity:

η
pl
i = p sinφi + ci cosφip

3(3+ sinφi ) 2ε̇i

which is a commonly used formulation in geodynamics, based on the
Drucker-Prager yield criterion (Glerum et al., 2018; Spiegelman et al.,
2016).

In these equations ε̇i is the square root of the second invariant of the strain
rate tensor, R is the gas constant, and P and T are the pressure and temper-
ature. The full pressure is used in these equations, including in the plasticity,
and not the lithostatic pressure as in Chertova et al. (2014a). Although using the
full pressure in the plasticity has been shown to be potentially problematic for
the solvers (Spiegelman et al., 2016), we obtained convergence to a nonlinear
normalized tolerance level of 10−6 within the first few time steps.

We make use of the pre-existing "visco plastic" material model of ASPECT,
which first separately computes the three viscosities and then combines them
as follows:

1. a composite viscous viscosity is first computed through

ηvisc =
(

1

ηdff
i

+ 1

ηdsl
i

)−1

2. if the associated viscous stress 2ηvi sc ε̇i exceeds the plastic yield strength
then the plastic viscosity ηpl is used instead of ηvi sc ;

3. if more than one compositional field is present at a given point, viscosi-
ties are averaged with a harmonic scheme (Schmeling et al. (2008)).

Finally, in order to avoid too poorly conditioned matrices, the resulting ef-
fective viscosities ηeff are bounded such that:

ηmin ≤ ηeff ≤ ηmax (4.5)

where ηmin and ηmax are user-chosen parameters that typically define a range
of 5-6 orders of magnitude.

There are 5 materials in our model, each associated with density, thermal
and rheological parameters. The rheological parameters of these materials are
listed in Table 4.1.
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Symbol Meaning Ref. value Units

ηmin Minimum viscosity 5e19 Pa·s
ηmax Maximum viscosity 5e24 Pa·s
T0 Ref. temp for whole model 293 K
α Thermal expansion 2e-5 K−1

ρ Density 3300 kg·m−3

d Grain size 0.01 m
mdiff Diffusion creep grain size exponent 3 m
mdis Dislocation creep grain size exponent 0 m
Cp Heat capacity 1.25e3 J/kg/K
k Thermal diffusivity 0.8e-6 m2/s

Background (upper mantle)

Adi f f
b Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
b Diffusion creep activation energy 335e3 J / mol

V di f f
b Diffusion creep activation volume 5.0e-6 m3 / mol

ndi s
b Dislocation creep exponent 3.5

Adi s
b Dislocation creep prefactor 6.51e-15 Pa−ndis s−1

Qdi s
b Dislocation creep activation energy 530.e3 m3 / mol

Qdi s
b Dislocation creep activation volume 18e-6 m3 / mol

cb Cohesion 20e6 MPa
φb Angle of friction 15 ◦

composition 0 (NSA crust)

Adi f f
0 Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
0 Diffusion creep activation energy 375e3 J / mol

V di f f
0 Diffusion creep activation volume 6.0e-6 m3 / mol

ndi s
0 Dislocation creep exponent 4.0

Adi s
0 Dislocation creep prefactor 8.57e-28 Pa−ndis s−1

Qdi s
0 Dislocation creep activation energy 167e3 m3 / mol

Qdi s
0 Dislocation creep activation volume 36e-6 m3 / mol

c0 Cohesion 10e4 MPa
φ0 Angle of friction 5 ◦

composition 1 (Caribbean crust)

Adi f f
1 Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
1 Diffusion creep activation energy 375e3 J / mol

V di f f
1 Diffusion creep activation volume 6.0e-6 m3 / mol

ndi s
1 Dislocation creep exponent 4.0

Adi s
1 Dislocation creep prefactor 8.57e-28 Pa−ndis s−1
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Qdi s
1 Dislocation creep activation energy 223e3 m3 / mol

Qdi s
1 Dislocation creep activation volume 18e-6 m3 / mol

c1 Cohesion 10e6 MPa
φ1 Angle of friction 10 ◦

composition 2 (weakzone crust)

Adi f f
2 Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
2 Diffusion creep activation energy 375e3 J / mol

V di f f
2 Diffusion creep activation volume 6.0e-6 m3 / mol

ndi s
2 Dislocation creep exponent 4.0

Adi s
2 Dislocation creep prefactor 8.57e-28 Pa−ndis s−1

Qdi s
2 Dislocation creep activation energy 167e3 m3 / mol

Qdi s
2 Dislocation creep activation volume 18e-6 m3 / mol

c2 Cohesion 10e4 MPa
φ2 Angle of friction 5 ◦

composition 3 (weakzone lithosphere)

Adi f f
3 Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
3 Diffusion creep activation energy 335e3 J / mol

V di f f
3 Diffusion creep activation volume 6.0e-6 m3 / mol

ndi s
3 Dislocation creep exponent 3.8

Adi s
3 Dislocation creep prefactor 6.51e-15 Pa−ndis s−1

Qdi s
3 Dislocation creep activation energy 440e3 m3 / mol

Qdi s
3 Dislocation creep activation volume 18e-6 m3 / mol

c3 Cohesion 10e6 MPa
φ3 Angle of friction 10 ◦

composition 4 (lower mantle)

Adi f f
4 Diffusion creep prefactor 8.88e-15 Pa−ndis s−1

Qdi f f
4 Diffusion creep activation energy 335e3 J / mol

V di f f
4 Diffusion creep activation volume 6.0e-6 m3 / mol

ndi s
4 Dislocation creep exponent 3.5

Adi s
4 Dislocation creep prefactor 6.51e-15 Pa−ndis s−1

Qdi s
4 Dislocation creep activation energy 530e3 m3 / mol

Qdi s
4 Dislocation creep activation volume 18e-6 m3 / mol

c4 Cohesion 20e6 MPa
φ4 Angle of friction 15 ◦

Table 4.1: List of Parameters for the reference model
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4.5 Experiments
Many dozens of experiments were needed in search for acceptable rheolog-

ical settings. The initial model, although geometrically constrained by present-
day mantle structure, plate motions and tectonic evolution, requires definition
of the initial rheology and temperature field. Particularly, we searched for man-
tle rheology, within acceptable bounds, that would allow for a smooth continu-
ation of subduction from the starting model avoiding complications such as,
e.g., immediate detachment/necking of the slab, or other strong changes in
slab morphology. Such ’sudden’ slab morphology variation would be an abrupt
change from the gradual 30-35 Myr of slab evolution leading to the arcuate
slab geometry we reconstructed for 10 Ma. Moreover, strong slab morphology
changes would also not be consistent with the present-day tomographic obser-
vation which provides a strong constraint on our modelling. Also, many model
experiments were conducted to find rheology settings that would create a more
or less mantle-stationary trench during 10 Myr of model evolution while still al-
lowing for gradual slab morphology change in the upper mantle depending on
(weak, intermediate, or strong) rheology of the deeper upper mantle.

We present a selection of models that assess the geodynamics of arcuate
subduction in various ways. We have adopted one model as the reference
model, relative to which we will discuss the effects of variations in initial model
geometry, plate velocities, and model rheology. The selection of models pre-
sented here is based on the parameters which were most influential on model
evolution, particularly, for obtaining ongoing subduction at a more or less sta-
tionary eastern LA trench in this setup of arcuate subduction.

The variations of the reference model concern using a weaker and stronger
crust of the NSAM plate and of plate boundary weak zones, variation of the
mantle strength and of slab temperature, addition of compositional weak zones
in the slab and the effect of doubling the NSAM plate velocity. The full set of
discussed models is shown in table 4.2.

4.5.1 The reference model
The starting geometry of the reference model is discussed in section 4.2. Af-

ter ample experimentation we arrived at the rheology and temperature settings,
as described in table 4.1. Starting point for the rheological parameters come
from Gleason and Tullis (1995); Karato (2008); Hirth and Kohlstedt (2003). The
reference model rheology is tuned to provide a more or less stationary trench.
Figure 4.3 shows the reference model after 10 Myr of simulation, presented
with similar view angles as in figure 4.2 giving an overall impression of the flow
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Model name specificity

CFn_ppv15_pv15_nsaqds167e3_wzqds167e3_mvdf5.0e-6 Reference model A
CFn_ppv15_pv15_nsaqds223e3_wzqds223e3_mvdf5.0e-6 Stronger NSA plate crust and weakzone

w.r.t. ref. model A
CFn_ppv15_pv15_nsaqds111e3_wzqds111e3_mvdf5.0e-6 Weaker NSA plate crust and weakzone

w.r.t. ref. model A
CFn_ppv15_pv15_nsaqds167e3_wzqds167e3_mvdf6.0e-6 Stronger mantle w.r.t. ref. model A
CFn_ppv15_pv15_nsaqds167e3_wzqds167e3_mvdf4.0e-6 Weaker mantle w.r.t. ref. model A
CFn_ppv30_pv15_nsaqds167e3_wzqds167e3_mvdf5.0e-6 Reference model B: Colder initial slab by

doubling the past slab velocity
CFn_ppv30_pv15_nsaqds167e3_wzqds167e3_mvdf6.0e-6 Stronger mantle w.r.t. ref. model B
CFn_ppv30_pv15_nsaqds167e3_wzqds167e3_mvdf4.0e-6 Weaker mantle w.r.t. ref. model B
CFn_ppv30_pv30_nsaqds167e3_wzqds167e3_mvdf5.0e-6 Double the NSA plate velocity w.r.t. ref.

model B
CFe_ppv15_pv15_nsaqds167e3_wcqds167e3_mvdf5.0e-6 Eastern slab weakzone w.r.t. ref. model A
CFc_ppv15_pv15_nsaqds167e3_wcqds167e3_mvdf5.0e-6 Central slab weakzone w.r.t. ref. model A
CFw_ppv15_pv15_nsaqds167e3_wcqds167e3_mvdf5.0e-6 Western slab weakzone w.r.t. ref. model A

Table 4.2: List of model runs used in this chapter. CF indicates where a slab weakness zone
is located (n for none, e for east, c for central and w for west), ppv is the past plate velocity
used in the McKenzie model in mm/yr, pv is the plate velocity for the NSAm plate in mm/yr,
nsaqds is the dislocation activation energy of the crustal part of the NSA plate and slab, wcqds is
the dislocation activation energy of the crustal part of the weak zones and mvdf is the diffusion
activation volume of the upper mantle.

field. Following the kinematic boundary condition on the model edges, the
Caribbean plate remains stationary and without significant internal deforma-
tion while the NSAM plate moves coherently west.

Figure 4.4 shows a top view of the reference model, where the colors indicate
the values of the strain rate at the surface. The strain rate is used for display as
it allows to delineate the curved trench where high subduction-related strain
rates occur. The black lines in the figure are for reference and show that the
eastern trench moves slightly west. The observation of a near stationary east-
ern trench is supported by figure 4.5, in which the red line shows that the loca-
tion of subduction channel at the base of the lithosphere does not significantly
move over 10 Myr. The tip of the slab, however, does move a significant amount,
as indicated by the black line, showing that subduction is active. Besides west-
ward movement of the slab tip, part of the 150 km of plate convergence is taken
up by the vertical sinking of the slab, increasing its curvature with depth, due
to the vertically directed gravitational pull. The stationary nature of the eastern
trench can also be seen from the red line in figure 4.6 delineating the slab core
at the depth of 150 km and at 1 Myr of the simulation. In this figure we notice
a strong difference with the NLA slab which exposes strong slab steepening,
while the NLA trench does not appreciably move during 10 Myr of evolution
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Figure 4.3: The reference model at 10 Ma with similar viewing angles as in figure 4.2. The
volume rendering is based on temperature while the colors indicate viscosity. In the top box,
all temperatures below 600 K and above 1535 K have been made transparent, and in the bottom
figure only the temperatures above 1535 have been made transparent. The arrows and arrow
colors indicate velocity direction and magnitude, respectively.

(Fig. 4.4).
We also note the high strain rate deformation that is visible at the surface

involving the upper-plate weak zone above the NLA slab (green in Fig. 4.2, top)
which is broadening towards the south during modelled 10 Myr of evolution
(Fig. 4.4). This may indicate an effect of arcuate subduction on upper plate
deformation which concurs in location with the actually observed tectonic de-
formation of upper plate, e.g. Calais et al. (2016). Investigating this further
requires more detailed modelling of upper plate structure and rheology which
is beyond our scope here.

The reference model exposes clearly the process of slab dragging. The NLA
slab is being dragged to the west by the trench-parallel motion of the NAM
plate. This can already be seen in figure 4.6 but is more clearly exposed in figure
4.7. The movement of the western slab edge supports the model of "slab edge
push" van Benthem et al. (2014). In 10 Myr, the slab edge has been transported
westward by about 100 km at the deep tip of the slab and by about 150 km at
the top, the latter conforming with the imposed plate velocity. This implies that
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Figure 4.4: A top view of the model with the colors showing the magnitude of the strain rate for
1 Myr, 5 Myr and 10 Myr. The black lines mark the location of the trench at 1 Ma, at the surface.
The red line delineates the location where side-views of the 3D model start by making the 3D
model transparent to the south of this line as, e.g, in for example figure 4.5.
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Figure 4.5: Viscosity and velocity evolution of the reference model through time. A view from
the south to the north, where the southernmost 100 km of the model has been made transparent
(see red line in figure 4.4) for location. The color scale indicates the viscosity, the arrow direction
show the the velocity direction and magnitude. Note that the arrows still point in their original
full 3d direction and may therefore go in and out the plane of the section. The black line shows
the initial position of the slab at the base of the upper mantle and the red line shows the initial
slab interface location at the base of the lithosphere.

much of the NLA slab is being dragged through the mantle, while this does not
happen for the eastern LA slab. The differential motion must be reflected in
slab stress and deformation.

To investigate slab stress, we visualize the maximum shear stress magnitude
and direction in the slab in figures 4.8 and 4.9. In figure 4.8 the model is viewed
towards the north. At 1 Myr, the shear stress pattern in the NLA slab still show
much high-amplitude variation which we attribute to a redistribution of stress
relative to the initial stage. Maximum shear stress patterns at 5 Myr and 10
Myr show large similarity and show horizontal directions in the deep western
portion of the slab and away from the slab edge. This slab segment exposes
overall slab-strike parallel horizontal shear which may be explained by the ob-
servation that the deep slab has moved less to the west than the top part of the
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Figure 4.6: Slab evolution through time for the reference model. A top view of the model where
the surface colors indicate viscosity and where all of the model above 150 km and the tempera-
tures beyond the range 600 to 1535 K have been made transparent. The arrows show the velocity
field. The red line shows the location of the slab in the reference model at the depth of 150 km
and at 1 Myr, and the black line show the location of the slab edge at 1 Myr.
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slab. Another contribution to slab deformation may be the resistance of the
mantle against slab dragging (Spakman et al., 2018) which here increases with
depth in the upper mantle. We will investigate the effect of mantle viscosity
further below. In Fig. 4.8, the stress pattern in the eastern slab is seen in cross
sectional view and exposes in the top half of the slab near vertical directions
which concur with the observed vertical slab sinking of this slab segment. In
figure 4.9 the model is viewed in eastward direction and exposes the maximum
shear stress pattern along strike of the eastern LA slab. Near the southern free
slab edge, we again observe the vertical shear directions of the upper part of the
slab. No slab dragging occurs here and the slab sinks vertically between the sta-
tionary trench and the deep portion of the slab that experiences the resistance
of increased mantle viscosity. Going to the north along the eastern LA slab, the
direction of the maximum shear stress turns quickly along slab-strike to a 45°
angle with the dip direction which we attribute to the transition between the
relatively stationary eastern LA slab and the NLA slab being dragged towards
the west.

Our reference model generally shows maximum shear stress directions that
have a large slab-strike parallel component. This is in contrast with the classical
’2D’ view of dip-aligned directions of slab stress (e.g. Houston, 2015). Impor-
tantly, slab dragging in the geometrical framework of arcuate subduction offers
an explanation for the observed but, as yet poorly explained, slab-strike paral-
lel horizontal components of earthquake slip (e.g. Myhill, 2012; Houston, 2015;
Christova, 2015), which deserves further exploration by numerical modelling.

4.5.2 The influence of the crustal rheology of the subducting plate
The crust of the NSAM plate is subducted along the LA trench. Its rheologi-

cal strength is tuned to lubricate the subduction channel but if stronger/weaker
it may also cause strong shear coupling/decoupling with the overriding Caribbean
plate. In this experiment we change the strength of the subducting crust by
changing the activation energy of the dislocation creep relative to that of the
reference model. This change is equally applied to crust of the ’green’ weak
zones that serve to (de-)couple lateral plate motion (see figure 4.2, top). In fig-
ure 4.10 the effects on plate coupling and slab evolution are shown for the east-
ern LA slab. Between the strongest and weakest crust, the difference in position
of the base of the subduction channel is about 35 km. A stronger subducting
crust increases plate coupling and leads to trench advance accommodated by
internal EW-deformation of the overriding plate. A too weak crustal strength
leads to some slab rollback and increases the tendency of the slab to sink ver-
tically and in the extreme case may lead to slab detachment. The tendency to
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Figure 4.7: A view of the reference model at 0, 5 and 10 Myr. The model is transparent for
temperatures below 600 K and above 1535 K. The colors indicate the viscosity. The black line
shows the initial location of the western edge of the slab and the red line shows the initial location
of the eastern trench.

buckling of the top part of the slab accommodates part of the enforced plate
convergence leading to a more easterly position of the slab tip. A subtle inter-
play between deep-upper mantle viscosity, lithosphere rheology, slab pull, and
advancing plate motion is exposed here.

Figure 4.11 presents a top view that also incorporates the response of the
NLA slab to varying the strength of the subducting crust. In the model with
the strongest crust (top panel), the plate coupling is large enough along the en-
tire trench to cause the Caribbean plate to deform internally and assume local
westward motion, which does not occur for the reference model. In case of
the weakest crust (bottom panel), the top part of the slab is able to sink ver-
tically while generating a stronger toroidal flow around the slab edge towards
the top part of the slab as compared to the reference model (central panel). The
toroidal flow around the southern slab edge is less affected.

4.5.3 The influence of mantle viscosity and the temperature of the
slab

Slab temperature in the initial model is determined from the McKenzie
(1970) analytical slab temperature model. This involves an assumed subduct-
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Figure 4.8: Maximum shear stress through time. The direction and magnitude of maximum
shear stress visualized by the cylinders as viewed from the south. For reference, a partially trans-
parent colored mesh of figure 4.7 has been added.
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Figure 4.9: Maximum shear stress through time. The direction and magnitude of maximum
shear stress visualized by the cylinders as viewed from the west. For reference, a partially trans-
parent colored mesh of figure 4.7 has been added.
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Figure 4.10: Effects of variation of crustal strength. Three model results are shown for the east-
ern LA slab that have been obtained for three different crustal strengths, as parameterized by
the dislocation activation energy (naqds; m3/mol). The black line lines up with the location of
the tip of the slab and the red line lines up with the base of the subduction channel, both in the
model with strongest (223e3) crust.

ing plate velocity, called here the past plate velocity (ppv), that controls the
down-dip advection of slab temperature in the McKenzie model. Here we
change the reference model ppv value of 1.5 cm/yr to 3 cm/yr leading to a
colder slab with an overall stronger slab rheology as can be seen in figure
4.12. The stronger slab counteracts the tendency for slab buckling leading to a
slightly straighter slab geometry as compared to the reference model slab 4.12.

In 6 modelling experiments, we combined these two initial slab-temperature
models with a mantle rheology that is weaker, or stronger than in the reference
model. The overall strength of composite mantle viscosity was determined by
only changing the diffusion creep activation volume from the reference model
value of 5e-6 m3/mol by a value of 1e-6 m3/mol, keeping all other rheologi-
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Figure 4.11: Effects of variation of crustal strength. A top view of the reference model (middle),
a model with a weaker crust (bottom), and a model with a stronger crust (top). The colors indi-
cate viscosity and the model above 150 km and the model volumes with temperatures outside
the range 600-1535 K have been made transparent. The arrows show the velocity field. The red
line shows the location of the slab in the reference model at the depth of 150 km and at 1 Myr, as
in figure 4.6.
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Figure 4.12: Effect of slab temperature. Figure layout as in figure 4.5. The left panels show the
reference model, and the right panels show the ’cold’ model with a ppv of 3 cm/yr. The top
panels shows the temperature of the initial model, and the bottom panels shows the viscosity in
colors and velocity in arrows after 10 Myr. See text for details.

cal settings of the reference model. In figure 4.13 six models are shown for the
two levels of slab strength and 3 levels of mantle strength. The first notable
effect is that a stronger mantle provides more viscous resistance to westward
slab dragging as shown by the more eastward position of the slab near the 660
as compared to the weaker mantle cases. The second effect is that the entire
slab sinks to larger depth in weaker mantle which results from the decreased
viscous slab-mantle coupling. The difference in slab depth is 75-100 km be-
tween the strongest and weakest mantle. The third effect is that the southern
edge of the slab just above 660 km has moved 60 km more to the west in the case
of the weak mantle, as compared to the strong mantle. On the north side, the
slab tip (of the south-dipping slab) is more or less at the same location. Lastly,
the overall patterns of directions of maximum shear stress are comparable, but
not the magnitudes. The colder slab can carry larger-amplitude stress, while a
weaker mantle allows for more slab deformation associated with higher levels
of slab stress.

These experiments demonstrate that slab dragging and the associated slab
stress field are robust features with respect to the variations in slab tempera-
ture and in overall mantle viscosity. In addition, slab morphology (seismolog-
ical observations) and slab stress (earthquake mechanism observations) may
be important diagnostics for the dynamic state of arcuate subduction systems
that involve slab dragging.

4.5.4 The influence of vertical weak zones in the slab
The Geodynamic World Builder facilitates making changes to the 3D initial

model. Here we replace a vertical slab segment by much weaker material (as
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Figure 4.13: Effect of mantle and slab strength. A north-directed view, as in figure 4.7, of 6
slab models overlain by maximum shear stress directions as in figure 4.8. The left panels show
models starting from the initial slab temperature of the reference model. The panels on the right
show models computed with the colder initial slab of Fig. 4.12. The top row of panels shows
models with a stronger overall upper mantle rheology defined by only changing the reference
model diffusion creep activation volume to 6e-6 m3/mol, the center panels show models based
on the reference model rheology with a diffusion creep activation volume value of 5e-6 m3/mol,
and the bottom panels show models having the weakest mantle resulting involving the diffusion
creep activation volume of 4e-6 m3/mol. The black and red lines are plotted at exactly the same
location in each model for cross-reference.

indicated in Fig. 4.2) to test for slab deformation during subduction evolution.
The vertical weak zone is implemented by replacing the crust and mantle rhe-
ology of a specific GWB part of the slab by a much weaker rheology, decreas-
ing the local slab strength by about 2 orders of magnitude. We inserted such
slab weakness at three different places. The results (3D viscosity and velocity
field) after 10 Myr of model evolution are shown in figure 4.14. The presence
of a weak zone in the slab does not have a large influence on the overall slab
evolution. The weak zone is, to first order, advected with the stronger ambient
slab. One cause for this is that at the surface, the lithosphere of the subduct-
ing NSAM plate is defined to be rather strong (typically 1024-1025 Pas) which
does not allow for much lateral intra-plate deformation, implying that the lat-

103



4

Chapter 4. Assessing the geodynamics of strongly arcuate subduction zones:
the eastern Caribbean subduction setting.

eral width of the weak zone in the top of the slab is largely preserved. Similarly,
with increasing depth the strength of the weak zone slowly increases, following
a similar trend in the stronger adjacent slab, which causes that also in the deep
upper mantle lateral slab deformation is hampered. More generally, this indi-
cates that the lateral rheological strength of the subducting plate may strongly
control the lateral deformation of the slab during arcuate subduction.

Although the lateral slab deformation is restricted, we can observe variable
slab sinking, i.e. associated with vertical slab deformation, that correlates with
the position of the inserted vertical weakness. This is best exposed by the lat-
eral mantle velocity field under the Caribbean plate as can be inspected from
figure 4.14 which exposes for each model different patterns of strong mantle
flow towards the NLA slab. This flow is forced by the slab geometry change due
to differential vertical slab sinking as was observed in our reference model for
the NLA (Fig. 4.6) and SLA slabs (Fig. 4.5) and is amplified when the strength of
the subducted crust is reduced (Fig. 4.10). A vertical weak zone in the slab leads
to sufficient decoupling of the adjacent slab segments to facilitate differential
slab sinking. Associated small slab geometry changes relative to the reference
model slab (top panel; Fig. 4.6) can be identified in figure 4.14 where the red
reference line follows the core of the reference slab. The closer the weak zone
is located towards the western slab, the more slab sinking is accommodated
by a laterally smaller segment of the slab. More detailed models and longer
model evolution are required to investigate if inherited slab weakness may lead
to vertical slab segmentation resulting from differential vertical and/or hori-
zontal slab motion, as proposed for the NLA slab (Harris et al., 2018). In con-
trast, the eastern trench is not sensitive to the presence of a weak zone in the
slab.

4.5.5 The influence of the subducting plate velocity
In this section we investigate the effect of doubling the NSAM plate velocity

to 3 cm/yr to investigate its role in the geodynamic evolution of the arcuate
slab. The initial temperature model of the slab is based on a ppv of 3 cm/yr as
in Fig. 4.12, while the overall rheological model is that of the reference model.
The resulting model, called model B, is compared to a model A based on the
NSAM velocity of 1.5 cm/yr and also on a ppv of 3 cm/yr. We compare the slab
in model A at stages 10 Myr and 20 Myr with the slab in model B at 5 Myr and 10
Myr of evolution, respectively, such that an equal amount of plate convergence
has occurred at each of the two stages of slab evolution.

Figure 4.15 shows the slab at these two comparable stages of evolution. The
main inference is that slab geometry at these two stages is highly comparable
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Figure 4.14: Effects of vertical weak zones in the slab. A top view of 4 models at 10 Myr, which
differ by the presence and location of a weak zone in the slab. The surface colors indicate viscos-
ity and where all of models above 150 km and the temperatures outside the range 600 to 1535 K
have been made transparent. The arrows show the velocity field of the model. The curved red
line shows the location of the slab without a weak zone.
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Figure 4.15: Effect of doubling the subducting slab velocity. Varying the subducting plate ve-
locity from 1.5 cm/yr to 3 cm/yr for an inital slab with a ppv of 3cm/yr. The top two panels show
model A with a plate velocity of 1.5 cm/yr at 10 Myr and 20 Myr while the bottom panels show
model B, with subducting plate velocity of 3 cm/yr, at the comparable plate convergence stages
of 5 Myr and 10 Mr, respectively. Model volumes with temperature below 600 K have been made
transparent. The model viscosity is color coded. Arrows indicate the 3D velocity field with ve-
locity magnitude shown in color. The red line is plotted for reference and delineates the core of
the slab of model A at 10 Myr (top-left panel)

showing only morphology differences on the scale of 10-20 km. One cause for
these small differences is the earlier inference that, due to a vertical component
of slab sinking (e.g. Fig. 4.5 and Fig. 4.6), the slab morphology is also depen-
dent on the viscosity of the ambient mantle (illustrated in Fig. 4.13) and thus
on the slab model-residence time in the mantle. The latter is different between
both models at the temporal stages of comparison. The most notable differ-
ence in slab curvature between model A and B may possibly be attributed to
that effect. The western slab edge in both models is almost at the same posi-
tion in both stages. This is to be expected near the top where the stiff NSAM
plate rheology dominates slab dragging. Close comparison of the position of
the entire western slab edge between models A and B shows that this is highly
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comparable with differences in position at depth not exceeding 10 km. As we
observed earlier (Fig. 4.6 and Fig. 4.7), the deep slab tip of the western edge in
the reference model has been dragged by 50 km less to the west during 10 Myr
of slab evolution. This is due to the mantle resistance against slab dragging and
resistance of the slab against lateral deformation and the effect is similar for the
stiffer slab of model A as can be inferred from Fig. 4.13 where the end-stages of
the reference slab and the stiffer slab are highly comparable. The observation
that the western slab edge in model B, at 5 and 10 My, is almost at the same po-
sition as in model A at 10 Myr and 20 Myr, respectively, leads to the important
implication that doubling the absolute plate (dragging) motion of the subduct-
ing plate effectively increases the mantle resistance against slab dragging in the
deeper upper mantle. We did not investigate the precise nature of the mantle
resistance against slab dragging which can be a combination of the interaction
of the base of the slab with the more viscous lower mantle and the viscous cou-
pling between the slab and ambient upper mantle.

4.6 Discussion and conclusions
We assessed first-order geodynamic characteristics of strongly arcuate sub-

duction systems for which we took the plate tectonic setting of the Lesser An-
tilles subduction as the natural example. We took an advanced subduction
stage as starting point which was the relatively well-constrained plate tectonic
setting of the Lesser Antilles trench at 10 Ma (e.g. van Benthem et al., 2014;
Boschman et al., 2014). With the Geodynamic World Builder (Fraters et al.,
2019b)(Chapter 3), we constructed the 3D slab following the arcuate trench-
geometry and with a lateral slab curvature based on present-day tomography
(Harris et al., 2018). The slab geometry is not necessarily correct but defines
a starting point for modelling the evolution of arcuate subduction. Our nu-
merical subduction experiments are conducted with the open source ASPECT
code and are particularly based on the implementation of composite nonlin-
ear visco-plastic rheologies (Glerum et al., 2018) and on the faster and stable
convergence provided by the Newton method (Fraters et al., 2019a)(Chapter 2).

We particularly designed our experiments for a "90°"-arcuate subduction
setting that combines trench-perpendicular subducting-plate convergence at
a mantle-stationary trench along one side of the system with trench-parallel
subducting-plate motion occurring at a mantle-stationary trench along the
other side. This geodynamic setting defined the reference subduction model
for which we showed in various experiments that the main dynamic features of
modelled arcuate subduction evolution are robust with respect to realistic vari-
ations of the kinematic settings and of the rheological crust-mantle properties.
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Foremost, our simulations of 10 Myr, in one case 20 Myr, of subduction evo-
lution demonstrated that slab dragging, i.e. lateral transport of the lithosphere
slab by the surface motion of the subducting plate, is a geodynamically feasi-
ble process that leads to internal slab deformation but not necessarily to im-
mediate slab tearing or destruction of the arcuate nature in other ways. Slab
dragging is demonstrated for a large subduction system with an arcuate slab
across the entire upper mantle involving a more than ∼2000 km long trench
and for trench-parallel dragging velocities of 15 and 30 mm/yr during 10-20
Myr, involving trench-parallel slab transport by 150-300 km for the top of the
slab. Earlier assessments of the geodynamical feasibility of slab dragging con-
cerned relative short (< 200 km) and laterally small (∼100 km) slab ’stumps’ be-
ing dragged by the Pacific plate under the western NAM plate boundary (Pikser
et al., 2012) and the isolated, about 200-300 km wide, Gibraltar slab across the
upper mantle of the westernmost Mediterranean (Spakman et al., 2018). Here,
the application to eastern Caribbean subduction demonstrates that the over-
all slab geometry obtained after 10 My of evolution conforms with the tomo-
graphic images of the present-day LA slab, which agrees with the hypothesis
that westward slab dragging, involving the slab across the entire upper-mantle,
occurs along the northern LA trench.

A next key observation is that slab dragging is resisted by the slab and man-
tle involving two dynamic effects. The first effect is the viscous mantle resis-
tance against slab dragging, which was demonstrated in experiments using a
weaker or stronger mantle rheology relative to the reference model. The sec-
ond effect involves resistance of the slab itself against slab dragging. This is
more of a geometrical nature and is here caused by the geodynamic setting in
which the northern slab is moving away from the eastern slab. This implies lat-
erally distributed deformation of the slab which is associated with a complex
3D stress field. We visualized the stress field by showing the magnitudes and di-
rections of the maximum shear stress. For rheologically isotropic media, as we
model here, such directions indicate candidate directions of earthquake fault-
slip. We conclude from our experiments that slab dragging sets up a complex
slab stress field characterized by strong deviations in the slab stress orienta-
tion from the more classical view of maximum stress directions parallel to the
trench-perpendicular slab-dip plane. Particularly, we noticed horizontal slab-
strike parallel maximum directions of shear stress in the northern slab which
we relate to the bulk horizontal-shear deformation by 50 km across the entire
upper-mantle slab that occurred during 10 Myr of slab dragging with 15 mm/yr.
The generally off-dip directions of maximum shear stress explain observations
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of slab-strike parallel slip components inferred from focal mechanisms of in-
termediate and deep earthquakes (e.g. Giardini and Woodhouse, 1986; Myhill
and Warren, 2012; Houston, 2015; Christova, 2015; Meighan et al., 2013).

Slab stress and deformation due to slab dragging are transmitted into the
upper plate where it leads to crustal deformation (Spakman et al., 2018). Mod-
elling the tectonic response to slab dragging was not our goal, but in our refer-
ence model we did infer a first-order effect of upper plate deformation directly
south of the northern trench, which concurs in location with the observed up-
per plate deformation along the NLA plate boundary (e.g. Calais et al., 2016).

Our work realizes an important step towards the numerical simulation of
natural subduction by demonstrating the (open source) capabilities and com-
putational feasibility of assessing the first-order geodynamic features associ-
ated with natural (arcuate) subduction such that the next step of detailed mod-
elling of the tectonic evolution of the overlying crust is now within reach.
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4.7 Appendix A: GWB input
The reference world builder input file is given in listing 4.1. Colder slabs are

made through higher velocity in the temperature model of the slab. Note that
the notation of version 0.2.0 of the GWB would be a lot shorter. See listing 3.13
for an example which is written for version 0.2.0 and which has a very similar
initial setting. The weak zones are created by adding one of the three listings
between the subducting slab and South Weakzone featrues: listing 4.2 for the
western fault, listing 4.3 for the centeral fault and listing 4.4 for the eastern fault.

1 {
2 "version":"0.1",
3 "potential mantle temperature":1500,
4 "thermal expansion coefficient":2.0e-5,
5 "minimum points per distance":100000 ,
6 "interpolation":"monotone spline",
7 "coordinate system":{"cartesian":{}},
8 "features":
9 {

10 "oceanic plate":{"name":"NS American plate",
11 "coordinates":
12 [[1700e3 ,0] ,[1700e3 ,300e3] ,[1689e3 ,422e3] ,[1658e3 ,539e3],
13 [1606e3 ,650e3] ,[1536e3 ,749e3] ,[1450e3 ,836e3] ,[1350e3 ,906e3],
14 [1239e3 ,958e3] ,[1122e3 ,989e3] ,[1000e3 ,1000e3],[-1e3 ,1000e3],
15 [-1e3 ,1501 e3] ,[2501e3 ,1501 e3] ,[2501e3 ,-501e3],[-1e3 ,-501e3],
16 [-1e3 ,-50e3] ,[2000e3 ,-50e3] ,[2000e3 ,0e3]],
17 "temperature model":{"name":"linear", "depth":100e3},
18 "composition model":
19 {"name":"constant layers", "depth":100e3,
20 "layers":[{"compositions":[0], "thickness":30e3}]}},
21
22 "oceanic plate":{"name":"Caribbean plate",
23 "coordinates":
24 [[1700e3 ,300e3] ,[1689e3 ,422e3] ,[1658e3 ,539e3] ,[1606e3 ,650e3],
25 [1536e3 ,749e3] ,[1450e3 ,836e3] ,[1350e3 ,906e3] ,[1239e3 ,958e3],
26 [1122e3 ,989e3] ,[1000e3 ,1000e3],[650e3 ,1000e3],[-1e3 ,1000e3],
27 [-1e3 ,0e3] ,[1700e3 ,0e3]],
28 "temperature model":{"name":"linear", "depth":100e3},
29 "composition model":
30 {"name":"constant layers", "depth":100e3,
31 "layers":[{"compositions":[1], "thickness":30e3}]}},
32
33 "continental plate":{"name":"Caribbean weak zone",
34 "coordinates":
35 [[-1e3 ,1000 e3],[-1e3 ,750e3] ,[1536e3 ,749e3] ,[1450e3 ,836e3],
36 [1350e3 ,906e3] ,[1239e3 ,958e3] ,[1122e3 ,989e3] ,[1000e3 ,1000 e3],
37 [650e3 ,1000 e3]],
38 "temperature model":{"name":"linear", "depth":100e3},
39 "composition model":
40 {"name":"constant layers", "depth":100e3,
41 "layers":[{"compositions":[2], "thickness":30e3},
42 {"compositions":[3], "thickness":70e3}]}},
43
44 "mantle layer":{"name":"upper mantle", "top depth":100e3,
45 "coordinates":
46 [[-1e3 ,-500e3],[-501e3 ,2500 e3] ,[2501e3 ,2500 e3] ,[2501e3 ,-501e3]],
47 "temperature model":{"name":"none"},
48 "composition model":{"name":"none"}},
49
50 "mantle layer":{"name":"660", "top depth":660e3,
51 "coordinates":
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52 [[-1e3 ,-500e3],[-501e3 ,2500 e3] ,[2501e3 ,2500 e3] ,[2501e3 ,-501e3]],
53 "temperature model":{"name":"none"},
54 "composition model":
55 {"name":"constant", "depth":200e3, "compositions":[4]}} ,
56
57 "subducting plate":{"name":"Lesser Antilles slab",
58 "coordinates":
59 [[1700e3 ,0] ,[1700e3 ,300e3] ,[1689e3 ,422e3] ,[1658e3 ,539e3],
60 [1606e3 ,650e3] ,[1536e3 ,749e3] ,[1450e3 ,836e3] ,[1350e3 ,906e3],
61 [1239e3 ,958e3] ,[1122e3 ,989e3] ,[1000e3 ,1000e3] ,[650e3 ,1000 e3]],
62 "reference point":[-1,-1],
63 "starting depth":0, "maximum depth":660e3 ,
64 "segments":
65 {
66 "all":[{"length":150e3 , "thickness":[100e3], "angle":[0 ,25]} ,
67 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
68 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
69 {"length":300e3 , "thickness":[100e3], "angle":[50 ,0]},
70 {"length":0, "thickness":[100e3], "angle":[0]}] ,
71 "1":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
72 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
73 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
74 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
75 {"length":0, "thickness":[100e3], "angle":[0]}] ,
76 "2":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
77 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
78 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
79 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
80 {"length":0, "thickness":[100e3], "angle":[0]}] ,
81 "3":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
82 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
83 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
84 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
85 {"length":0, "thickness":[100e3], "angle":[0]}] ,
86 "4":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
87 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
88 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
89 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
90 {"length":0e3, "thickness":[100 e3], "angle":[0]}] ,
91 "5":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
92 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
93 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
94 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
95 {"length":0, "thickness":[100e3], "angle":[0]}] ,
96 "6":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
97 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
98 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
99 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},

100 {"length":0, "thickness":[100e3], "angle":[0]}] ,
101 "7":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
102 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
103 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
104 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
105 {"length":0, "thickness":[100e3], "angle":[0]}] ,
106 "8":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
107 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
108 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
109 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
110 {"length":0, "thickness":[100e3], "angle":[0]}] ,
111 "9":[{"length":150e3, "thickness":[100e3], "angle":[0,25]},
112 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
113 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
114 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
115 {"length":0, "thickness":[100e3], "angle":[0]}] ,
116 "10":[{"length":150e3, "thickness":[100 e3], "angle":[0,25]} ,
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117 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
118 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
119 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]},
120 {"length":0, "thickness":[100e3], "angle":[0]}] ,
121 "11":[{"length":150e3, "thickness":[100 e3], "angle":[0,25]},
122 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
123 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
124 {"length":50e3 , "thickness":[100e3], "angle":[50,0]} ,
125 {"length":0, "thickness":[100e3], "angle":[0]}]
126 },
127 "temperature model":
128 {"name":"plate model", "density":3300, "plate velocity":0.0150 ,
129 "thermal conductivity":2.5, "thermal expansion coefficient":2e-5 },
130 "composition model":
131 {"name":"constant layers",
132 "layers":[{"compositions":[0], "thickness":30e3},
133 {"compositions":[0], "fractions":[0], "thickness":70e3}]}},
134
135 "continental plate":{"name":"South Weakzone",
136 "coordinates":[[-1e3 ,0e3],[-1e3 ,-50e3] ,[2000e3 ,-50e3] ,[2000e3 ,0e3]],
137 "temperature model":{"name":"linear", "depth":100e3},
138 "composition model":{"name":"constant layers", "depth":100e3,
139 "layers":[{"compositions":[2], "thickness":30e3},
140 {"compositions":[3], "thickness":70e3}]}}
141 }
142 }

Listing 4.1: The reference GWB input file

1 "oceanic plate": {"name":"Compositional Western plate Fault",
2 "coordinates":[[1239e3 ,958e3] ,[1122e3 ,989e3] ,[1232e3 ,1167e3]],
3 "temperature model":{"name":"none"},
4 "composition model":{"name":"constant layers",
5 "layers":[{"compositions":[2], "thickness":30e3},
6 {"compositions":[3], "thickness":70e3}]}},
7
8 "subducting plate":{"name":"Compositional Western slab Fault",
9 "coordinates":[[1239e3 ,958e3] ,[1122e3 ,989e3]], "reference point":[-1,-1],

10 "segments":{
11 "all":[{"length":150e3 , "thickness":[100 e3], "angle":[0 ,25]} ,
12 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
13 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
14 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]}]} ,
15 "temperature model":{"name":"none"},
16 "composition model":{"name":"constant layers",
17 "layers":[{"compositions":[2], "thickness":30e3},
18 {"compositions":[3], "thickness":70e3}]}},

Listing 4.2: The addition to the reference GWB input file needed to create the western slab
weakzone.

1 "oceanic plate": {"name":"Compositional Western plate Fault",
2 "coordinates":[[1536e3 ,749e3] ,[1450e3 ,836e3] ,[1635e3 ,932e3]],
3 "temperature model":{"name":"none"},
4 "composition model":{"name":"constant layers",
5 "layers":[{"compositions":[2], "thickness":30e3},
6 {"compositions":[3], "thickness":70e3}]}},
7
8 "subducting plate":{"name":"Compositional Western slab Fault",
9 "coordinates":[[1536e3 ,749e3] ,[1450e3 ,836e3]], "reference point":[-1,-1],

10 "segments":{
11 "all":[{"length":150e3 , "thickness":[100 e3], "angle":[0 ,25]} ,
12 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
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13 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
14 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]}]} ,
15 "temperature model":{"name":"none"},
16 "composition model":{"name":"constant layers",
17 "layers":[{"compositions":[2], "thickness":30e3},
18 {"compositions":[3], "thickness":70e3}]}},

Listing 4.3: The addition to the reference GWB input file needed to create the central slab
weakzone.

1 "oceanic plate": {"name":"Compositional Western plate Fault",
2 "coordinates":[[1689e3 ,422e3] ,[1658e3 ,539e3] ,[1867e3 ,532e3]],
3 "temperature model":{"name":"none"},
4 "composition model":{"name":"constant layers",
5 "layers":[{"compositions":[2], "thickness":30e3},
6 {"compositions":[3], "thickness":70e3}]}},
7
8 "subducting plate":{"name":"Compositional Western slab Fault",
9 "coordinates":[[1689e3 ,422e3] ,[1658e3 ,539e3]], "reference point":[-1,-1],

10 "segments":{
11 "all":[{"length":150e3, "thickness":[100 e3], "angle":[0 ,25]} ,
12 {"length":150e3 , "thickness":[100e3], "angle":[25 ,50]} ,
13 {"length":371e3 , "thickness":[100e3], "angle":[50]} ,
14 {"length":275e3 , "thickness":[100e3], "angle":[50 ,0]}]} ,
15 "temperature model":{"name":"none"},
16 "composition model":{"name":"constant layers",
17 "layers":[{"compositions":[2], "thickness":30e3},
18 {"compositions":[3], "thickness":70e3}]}},

Listing 4.4: The addition to the reference GWB input file needed to create the eastern slab
weakzone.

4.8 Appendix B: ASPECT intput
1 set World builder file = world/builder/file/location.wb
2 set Output directory = aspect/output/dir/
3 set Dimension = 3
4 set CFL number = 0.05
5 set Max nonlinear iterations = 50
6 set End time = 2e7
7 set Nonlinear solver scheme = iterated Advection and Newton Stokes
8 set Timing output frequency = 0
9 set Max nonlinear iterations in pre -refinement = 0

10 set Pressure normalization = no
11 set Nonlinear solver tolerance = 1e-6
12 set Maximum time step = 10000
13 set Maximum relative increase in time step = 25
14 set Maximum first time step = 100
15
16 subsection Solver parameters
17 subsection Newton solver parameters
18 set Max pre -Newton nonlinear iterations = 100
19 set Nonlinear Newton solver switch tolerance = 1e-4
20 set Max Newton line search iterations = 0
21 set Maximum linear Stokes solver tolerance = 1e-1
22 set Use Newton residual scaling method = false
23 set Use Newton failsafe = true
24 set Stabilization preconditioner = SPD
25 set Stabilization velocity block = SPD
26 set Use Eisenstat Walker method for Picard iterations = true
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27 end
28 end
29
30 subsection Geometry model
31 set Model name = box with lithosphere boundary indicators
32 subsection Box with lithosphere boundary indicators
33 set X extent = 2500e3
34 set Y extent = 2000e3
35 set Z extent = 800e3
36 set Box origin Y coordinate = -500e3
37 set X repetitions = 25
38 set Y repetitions = 20
39 set Y repetitions lithosphere = 10
40 set Z repetitions = 6
41 set Z repetitions lithosphere= 1
42 set Lithospheric thickness = 100e3
43
44 end
45 subsection Box
46 set X extent = 3960000
47 set Y extent = 4620000
48 set Z extent = 660000
49 set X repetitions = 6
50 set Y repetitions = 7
51 end
52 subsection Ellipsoidal chunk
53 set NE corner = -58:26
54 set SW corner = -82:14
55 set Depth = 700000
56 set Semi -major axis = 6378137
57 set Eccentricity = 0
58 set East -West subdivisions = 4
59 set North -South subdivisions = 2
60 set Depth subdivisions = 1
61 end
62 end
63
64 subsection Material model
65 set Model name = visco plastic
66 subsection Visco Plastic
67 set Reference viscosity = 1.0 e21
68 set Grain size = 0.01
69 set Viscosity averaging scheme = harmonic
70 set Minimum viscosity = 5e19
71 set Maximum viscosity = 5e24
72 set Reference temperature = 293 lith , lower mantle
73 set Densities = 3300 3300, 3300
74 set Thermal expansivities = 2e-5
75 # Up M., NA C.,

CARBC , Wk C., Wk L., Lower Mantle
76 set Prefactors for dislocation creep = 6.51e-15, 8.57e-28, 8.57e

-28, 8.57e-28, 6.51e-15, 6.51e-16
77 set Stress exponents for dislocation creep = 3.5, 4.0,

4.0, 4.0, 3.8, 3.5
78 set Activation energies for dislocation creep = 530.e3, 167e3, 223.

e3, 167e3 , 440.e3 , 530.e3
79 set Activation volumes for dislocation creep = 18e-6, 36e-6, 18e

-6, 18e-6, 18e-6, 18e-6
80 set Prefactors for diffusion creep = 8.88e-15, 8.88e-15, 8.88e

-15, 8.88e-15, 8.88e-15, 8.88e-15
81 set Activation energies for diffusion creep = 335e3 , 375e3 , 375

e3, 375e3, 335e3, 355e3
82 set Activation volumes for diffusion creep = 5.0e-6, 6.0e-6, 6.0e

-6, 6.0e-6, 6.0e-6, 6.0e-6
83
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84 # Up M., NA C., CARBC , Wk C., Wk L., Lower
Mantle

85 set Angles of internal friction = 15, 5, 10, 5, 10, 15
86 set Cohesions = 20.e6 , 10e4, 10.e6, 10.e4, 10.e6, 20.e6
87 end
88 subsection Multicomponent
89 set Densities = 3300 ,3300 ,3000 ,3000
90 set Specific heats = 1250 ,1250 ,1250 ,1250
91 set Reference temperature = 273
92 set Thermal conductivities = 2.5 ,2.5 ,2.5 ,2.5
93 set Thermal expansivities = 4e-5,4e-5,4e-5,4.5
94 set Viscosities = 1.e20 ,1e20 ,1.e24 ,1e22
95 end
96 end
97 subsection Compositional fields
98 set Number of fields = 5
99 end

100
101 subsection Initial composition model
102 set Model name = world builder
103 end
104 subsection Gravity model
105 set Model name = vertical
106 subsection Vertical
107 set Magnitude = 9.81
108 end
109 end
110
111
112 subsection Mesh refinement
113 set Additional refinement times =
114 set Initial adaptive refinement = 2
115 set Initial global refinement = 1
116 set Minimum refinement level = 0
117 set Refinement fraction = 0.95
118 set Coarsening fraction = 0.05
119 set Strategy = composition , isotherms
120 set Time steps between mesh refinement = 1
121
122 subsection Composition
123 set Compositional field scaling factors = 0,0,0,0,1
124 end
125 subsection Isotherms
126 set Exclude composition = 0
127 #minref maxref mintemp maxtemp
128 set List of isotherms = max , max , 0, 1525; \
129 min -1, max , 1525, 1535; \
130 min , min , 1535, 1650; \
131 min , max , 1650, 3000
132 end
133 end
134
135
136 subsection Initial temperature model
137 set Model name = world builder
138 end
139
140
141 subsection Boundary temperature model
142 set List of model names = initial temperature fixed surface
143 subsection Initial temperature fixed surface
144 set Surface boundary indicator = 5
145 set Surface boundary temperature = 273.15
146 set Minimal temperature = 273.15
147 set Maximal temperature = 4000
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148 end
149 end
150
151 subsection Discretization
152 set Use locally conservative discretization = false
153 subsection Stabilization parameters
154 set Use artificial viscosity smoothing = false
155 set alpha = 2
156 set beta = 0.078
157 end
158 end
159
160 subsection Boundary temperature model
161 set Fixed temperature boundary indicators = 0,1,2,3,4,5,6,7,8,9
162 end
163
164 subsection Boundary velocity model
165 set Prescribed velocity boundary indicators = left lithosphere xyz:function ,

right lithosphere xyz:function , front lithosphere z:function , back
lithosphere z:function

166 set Tangential velocity boundary indicators =
167 set Zero velocity boundary indicators = bottom
168 end
169
170 subsection Boundary traction model
171 set Prescribed traction boundary indicators = front lithosphere: initial

lithostatic pressure , back lithosphere: initial lithostatic pressure ,left
: initial lithostatic pressure , right: initial lithostatic pressure , back
: initial lithostatic pressure , front: initial lithostatic pressure

172 end
173
174
175 subsection Free surface
176 set Free surface boundary indicators = outer
177 end
178
179 subsection Boundary traction model
180 subsection Initial lithostatic pressure
181 set Representative point = 2000e3 ,750e3 ,375e3
182 end
183 end
184
185 subsection Free surface
186 set Free surface stabilization theta = 0.75
187 end
188
189 subsection Boundary velocity model
190 subsection Function
191 set Variable names = x,y,z,t
192 set Function constants = velocity = -0.0150
193 set Function expression = if(x > 1, if(y >= -300e3 ,velocity ,(abs(y+500

e3)/200e3)*0.25* velocity +0.75* velocity), if(y <= 750e3 && y >= 0, 0, if(
y >= 1000e3 || y <= -50e3, velocity , if( y >= 750e3, (abs(y-750e3)/250e3
)*velocity , (abs(y)/50e3)*velocity))));0;0

194 end
195 end
196
197
198 subsection Postprocess
199 set List of postprocessors = visualization ,velocity statistics , composition

statistics , pressure statistics , temperature statistics
200 subsection Visualization
201 set Time between graphical output = 100e3
202 set List of output variables = viscosity , density , strain rate ,depth ,

nonadiabatic pressure , spd factor , shear stress eigenvectors , maximum
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shear stress
203 set Interpolate output = false
204 end
205 end
206
207 subsection Solver parameters
208 subsection Stokes solver parameters
209 set Number of cheap Stokes solver steps = 500
210 set Linear solver tolerance = 1e-1
211 end
212 end

Listing 4.5: The reference input file used to run the ASPECT models. For the variables ’World
builder file’ and ’Output directory’ dummy values are set.
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In this thesis I have addressed several first-order issues that aim to con-
tribute toward more efficient and effective modeling of 3D inherently compli-
cated natural subduction settings. These issues define first steps opening up a
large scope of new research.

The research into implementing a Newton solver for ASPECT, as reported
in Chapter 2, was originally intended as a relatively straight-forward develop-
ment. However, we identified a fundamental problem with solving the Stokes
equations via a Newton solver as is used in many other FE or FD codes. This
problem is that the linearization for setting up the Newton method may lead
to a singular matrix that prevents the solution of the Newton problem, while
this does not occur for the usual linearization associated with Picard iteration.
We have addressed this issue in an optimal manner, in the sense of fastest non-
linear convergence while retaining numerical stability. This was achieved for
solving the incompressible Stokes equations, however, the singularity problem
remains as yet unsolved for the compressible formulation, although we expect
that a similar approach in addressing the issue is feasible. Our solution to the
singularity problem is not restricted to ASPECT but also applicable to other FE
and FD methods. Straightforward wall-time comparison between the Picard
and Newton methods is problematic, because the computation time is prob-
lem dependent and dependent on what nonlinear tolerance is adopted for the
problem. I have shown that for a complex 3D case, the Newton solver was sig-
nificantly faster in terms of wall-time (see Chapter 2), which has been further
enhanced by later code optimization. Currently, the Newton solver requires
derivative information related to the materials used. In the current ASPECT
implementation some material models allow for fast analytical evaluation of
derivatives whereas others require a significant amount time for computing the
derivatives through finite difference. This is especially the case for the more
complex material models such as visco-plasticity. Using analytic derivatives
could lead also here to a considerable speed up of the Newton iteration.

In Chapter 3 I addressed the problem of how to create geometrically com-
plex initial conditions for numerical modelling in a user-friendly, easily extend-
able and easily modifiable way. To this end I developed an open source code
library, the Geodynamic World Builder (GWB), which allows for the creation
and (Paraview) visualization of complex initial temperature and initial com-
position model setups. This is realized through a simple text input-file, in the
JSON language, in which users provide parameters defining tectonic features
and their associated temperature and compositional models. The setup can be
easily changed from Cartesian to spherical coordinates and back. The library
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has been designed to be easily integrated with geodynamic codes used by the
geodynamic modelling community. So far, it has already been successfully in-
tegrated in two Fortran codes, ELEFANT and SEPRAN, and one C++ code, AS-
PECT. As shown in both Chapters 3 and 4, the present version of the GWB is
already a versatile tool and ready for use but several possibilities for extensions
of this library are already envisaged. Examples are parameterization of topog-
raphy/bathymetry, passive margins, variable crust and lithosphere thickness,
or of mantle plumes and mantle tomography models, which all will be consid-
ered in the near future. Other output possibilities can be plate velocities, for
example for use as boundary conditions. At the time that the GWB library be-
comes integrated in more codes by the community and sees its user base grow,
the amount of available features is expected to grow organically with the num-
ber of users adding their features as were required for their own project. While
users and developers alike usually implement their own initial conditions for
their specific setup and code, they have now the possibility to add it to a safe
and backward-compatible numerical library for their later (re-)use, or for use
by others.

In Chapter 4, I have used the advantages of the computational speedup and
accuracy of ASPECT offered by the Newton solver and the easy construction
of 3D initial conditions by the GWB, to advance research into the geodynam-
ics of strongly arcuate subduction in which the slab may be dragged trench-
parallel through the mantle by the surface motion of the subducting plate along
one segment of the curved trench. The plate-tectonic evolution of the strongly
arcuate eastern Caribbean subduction since 10 Ma provided the natural set-
ting for this investigation. By varying various initial settings, boundary condi-
tions, and parameters defining the model rheology, I demonstrated the geo-
dynamic feasibility of trench-parallel dragging of the northern Lesser-Antilles
(NLA) slab by plate motions between 1.5-3.0 cm/yr during the past 10 Myr and
5 Myr respectively, corresponding to westward lateral slab transport of 150 km,
while trench-perpendicular subduction along the eastern Lesser Antilles slab
remained more or less trench stationary. The actual absolute plate motion of
the North American plate along the NLA trench is about 2.0 cm/yr (Doubrovine
et al. (2012)) and within the modelled range. The geodynamic setting implies
considerable internal deformation and shape change of the slab which occurs
on spatial scales relevant for the tectonic evolution of the plate boundary zone.
In the common view, the stress field in the slab is dominantly aligned along the
slab-dip direction. In the geodynamic setting of arcuate subduction where the
plate convergence direction strongly changes along the trench, I generally in-
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ferred strong components of maximum shear stress oblique to dip-plane which
are associated with the along slab-strike deformation of the slab. This may link
to the occurrence of focal mechanisms of intermediate-depth and deep earth-
quakes with slab-strike parallel components of displacements (e.g. Christova,
2015) which cannot be explained by the classical "along-slab-dip" view on slab
stress (e.g. Houston, 2015). Intermediate depth earthquakes in the LA slab also
show a strong variation of stress(-drop) directions (e.g. Meighan et al., 2013).
I did not further investigate the particular relation between slab dragging and
focal mechanisms but regard this an important topic for future research.

The research of this chapter puts the spotlight on new possibilities and tar-
gets for numerical subduction modelling. First, it gives new possibilities for
subduction modelling of complicated 3D subduction settings. The GWB fa-
cilitates relatively easy construction of elaborate 3D initial models based the
paleo-tectonic setting of incipient subduction, or on more advanced stages of
subduction constrained by plate tectonic reconstructions, or on the present-
day plate-tectonic setting of a subduction zone for use in instantaneous dy-
namics modelling. Constructing alternative starting models is equally facili-
tated by the GWB and allows for easy implementation of alternative initial ge-
ometries for hypothesis testing. The regional subduction models I developed in
my thesis, using ASPECT with the new Newton solver, required variable com-
putation times on 480 MPI processes of 3-6 days providing model evolution
times of 10 Myr, mostly depending on the rheological complexity. Computa-
tions were performed on a modern (2018) parallel cluster. This shows that even
more refined models, e.g. of natural subduction, are within practical reach for
which the rheological parameters of Chapter 4 may serve as a good starting
point. Some material model improvements include incorporating elastic rhe-
ology and the Peierls creep deformation mechanism, and generally allowing for
compressibility. Lastly, the feasible computation times and the use of the GWB
may lead to making large steps toward elaborate numerical simulation of nat-
urally occurring subduction systems in which the interplay between slab pull,
slab dragging, and the viscous slab-mantle coupling is a prime target of inves-
tigation as well as how these coupled processes affect plate-tectonics and the
tectonic deformation of the crust of subduction plate boundaries.
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Summary

My thesis aims to resolve two main outstanding problems that occur when
trying to numerically simulate the 3D complexity of lithosphere subduction
evolution through geological time: high computational cost to solve the asso-
ciated non-linear systems accurately and the efficient constructing of compli-
cated 3D initial conditions mimicking a subduction setting in the geological
past or at the present-day.

The first issue of high computational cost is mostly due to the required use
of nonlinear rheologies which are needed to realistically include temperature-
, pressure- and stress dependent material properties of rock deformation. The
resulting nonlinear Stokes equations require an iterative solving strategy, which
can require a lot of iterations with the simple to implement Picard iteration.
The Picard iteration is robust, but slow to converge. The convergence rate can
be greatly improved by using a Newton iteration, which may fail to converge
if the iteration solution far from the real solution, but will converge very fast
when it is near the real solution. For very nonlinear systems of equations, a
combination of both methods is optimal. We discovered that the linear system
produced by the Newton iteration may in some cases not be solvable. We pro-
vide a general remedy for this issue by forcing the system to be solvable at a
minimum amount of convergence loss. We also show that this solution works
well for large 3D tectonic settings.

The second issue concerns setting up initial conditions for the geometric
complexity of realistic 3D subduction settings involving creating 3D fields of
initial temperature and of materials (e.g. crust, mantle, tectonic plates, faults
and weakness zones, 3D slab geometry). An initial condition may concern the
earliest stage of a subduction or other geodynamic system as well as an ad-
vanced stage, depending on our knowledge of the tectonic evolution. A simple
approach to this, such as writing simple functions directly into the code, works
well enough for 2D cases and very simple 3D cases. With increasing complex-
ity of the 3D geodynamic setting, it becomes however practically very difficult
to set up and modify the initial conditions in this way. In this thesis, I devel-
oped a more generic way for setting up initial numerical models leading to a
stand-alone code library called the Geodynamic World Builder (GWB), which
implements this. We show that the code library is already successfully cou-
pled to three different geodynamic codes. The new generic approach together
with the code library renders relatively easy initial-model construction as well
as modification of initial settings. In addition, it creates a platform to make
initial setups reproducible for use in different geodynamic codes.

In the last main chapter, I use these new developments to investigate a
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complicated and realistic 3D subduction evolution that resembles the eastern
Caribbean subduction setting since 10 Ma. The GWB allowed for flexible con-
struction of the initial settings of tectonic plates, weakness zones, and 3D slab
geometry at 10 Ma, while the Newton solver allowed for obtaining modelling
results relatively fast, typically between 3 and 6 days depending on the rheo-
logical complexity. The modelling results show that slab dragging, i.e. lateral
transport of the slab through the mantle by the trench-parallel motion of the
North American plate, has a strong effect on the slab geometry and the slab
stress field. Slab stress is displayed with the direction of maximum shear stress
in the slab, which may align with potential fault slip directions of earthquakes.
This shows that when slab dragging occurs major stress orientations are gener-
ally not trench-perpendicular, as is usually perceived for slab stress.

By this research described in the three main chapters of my thesis, I real-
ized important new steps towards numerical simulation of natural subduction
systems.
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Het doel van mijn proefschrift is om twee belangrijke openstaande proble-
men op te lossen die voorkomen bij numeriek simuleren van complexe 3D in-
teractie tussen de aardse tektonische platen en mantel processen: de compu-
terkracht die het kost om de geassocieerde niet-lineaire systemen accuraat op
te lossen en het efficiënt en reproduceerbaar maken van initiële condities voor
het nabootsen van subductie processen in het geologische verleden of het he-
den.

Het eerste probleem, het probleem van de hoge rekenkosten komt voor-
namelijk door het noodzakelijke gebruik van niet-lineaire rheologieën. Deze
rheologiën zijn nodig voor het realistisch modelleren van temperatuur, druk en
stress afhankelijkheden in gesteente. De resulterende niet-lineaire Stokes ver-
gelijkingen vereisen een iteratieve oplossingsstrategie. Deze strategie vereist in
sommige gevallen echter heel veel iteraties met de standaard Picard methode,
wat een iteratie is die simpel is om te implementeren maar in sommige geval-
len heel langzaam naar de juiste oplossing convergeert. De convergentie snel-
heid kan flink versneld worden door gebruik te maken van een Newton iteratie.
Deze iteratie divergeert wanneer de iteratie ver van de echte oplossing is, maar
convergeert heel snel wanneer het dicht bij de werkelijke oplossing is. Voor
systemen die erg niet-lineair zijn is een combinatie van beide methoden opti-
maal. We ontdekten echter dat het lineaire systeem dat voor de Newton iteratie
opgelost dient te worden in sommige gevallen niet oplosbaar is. In hoofdstuk
twee geven we een generieke oplossing voor dit probleem door het systeem te
forceren om oplosbaar te blijven met een minimum hoeveelheid convergentie
verlies. We laten ook zien dat dit goed werkt voor grote 3D tektonische proble-
men.

Het tweede probleem heeft te maken met het opzetten van initiële condi-
ties voor geometrisch complexe realistische 3D subductie zones. Dit vereist het
opzetten van 3D velden van initiële temperature en van materialen (e.g. korst,
mantel, tektonische platen, breuken en zwakte zones, 3D subducerende pla-
ten, etc.). Een initiële conditie kan de beginfase van een geodynamisch sys-
teem behelzen, zoals een subductie systeem, maar ook latere fasen, afhanke-
lijk van onze kennis van de tektonische evolutie. Een eenvoudige aanpak van
dit probleem, zoals het schrijven van simpele functies direct in de code, werkt
prima voor zowel 2D als simpele 3D gevallen. Het word echter met toenemende
complexiteit van de 3D geodynamische setting steeds moeilijker om de initiële
condities op deze manier op te zetten en aan te passen. Voor dit proefschrift
heb ik een meer generieke methode voor het opzetten van initiële condities
voor numerieke modellen ontwikkeld, wat heeft geleid tot een stuk software
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genaamd ’the Geodynamic World Builder’ or GWB, die de methode implemen-
teert. We laten zien dat de software al succesvol gekoppeld is aan drie verschil-
lende geodynamische modellen. Deze nieuwe generieke aanpak, samen met
de software, maakt het relatief makkelijk om initiële condities voor modellen te
maken en ze ook weer aan te passen. Deze aanpak zorgt ook voor een platform
die het mogelijk maakt om initiële modellen op te zetten in het ene platform en
reproduceerbaar te maken voor verschillende andere geodynamische model-
leerplatformen.

In hoofdstuk 4 gebruik ik deze nieuwe verbeteringen om een gecompli-
ceerde en realistische 3D subductie evolutie te onderzoeken die goed overeen-
komt met het oostelijk Caribisch gebied vanaf 10 miljoen jaar geleden. De GWB
maakt de flexibele constructie van initiële begin situaties van tektonische pla-
ten, zwakte zones en 3D slab geometrie mogelijk. De geïmplementeerde New-
ton iteratie zorgt er vervolgens voor dat de tijd die het kost om dit soort model-
len voldoende accuraat voor 10 miljoen jaar door te rekenen relatief laag is. Om
10 miljoen jaar door te rekenen in een model kost meestal tussen de 3 en 6 da-
gen op 240 hyperthreading processors (CPU’s), afhankelijk van de rheologische
complexiteit. De modellen laten ’slab dragging’ zien, wat een proces is waarbij
de slab lateraal door de mantel getransporteerd wordt. De spanning word be-
keken in de richting van maximale schuifspanning, die uitgelijnd kan zijn met
mogelijke richtingen van breukslip van aardbevingen. Dit laat zien dat wan-
neer de slab door de mantel gesleept wordt, de grote schuifspanningen over
het algemeen niet loodrecht op de trog staan, wat normaal gesproken gedacht
wordt.

In dit proefschrift heb ik door middel van het onderzoek van de drie kern-
hoofdstukken belangrijke nieuwe stappen gezet naar het numeriek simuleren
van natuurlijke subductie zones.
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